Objective

In a random lecture hall seating arrangement, there is a potential for 20% of students to be seated at a desk that is not accommodating to their dominant hand. This can have a negative effect on learning and create a distraction during their educational experience.

Goal: To create a lecture hall desk that will accommodate both right and left handed students.

Market: Universities and other educational settings.

Concept Generation

<table>
<thead>
<tr>
<th>Existing Competition</th>
<th>Concept #1</th>
<th>Concept #2</th>
<th>Concept #3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Customer Requirements

<table>
<thead>
<tr>
<th>Ease of use</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of tablet</td>
<td>Noise</td>
</tr>
<tr>
<td>Space between desks</td>
<td>Longevity</td>
</tr>
<tr>
<td>Comfort</td>
<td>Storage space</td>
</tr>
</tbody>
</table>

Davis Furniture (+) Ergonomic, Comfort (-) Lack of strength

Swivel Tablet (+) Ease of use (-) Reduced storage area

Detachable Tablet (+) Ease of fabrication (-) Lose tablet

Behind the Back Swivel (+) More storage space (-) Long track (noisy)

Design

- Single product with right and left orientations
- Adequate writing surface with armrest
- User intuitive

Tablet Assembly

- Sliding tracks to move tablet
- Large, smooth writing surface
- Armrest
- Does not fold down (tradeoff)

Support Assembly

- Bearings to facilitate 180° motion
- Little force required to operate
- Aluminum – cheap, light, strong, but hard to weld (tradeoff)

Prototype and Testing

- FEA testing completed to verify material and assembly strength
- User survey to be conducted for functionality feedback
- Manufactured product to feature welds at all connections to ensure structural integrity
- Assembly and motion fully functional within dimension constraints

Von-Mises Stresses for 200lb load

- Load applied to inner edge of tablet
- Load applied to front of tablet
- Load applied to armrest

Test Results and Future Work

Design Process
1. Identified Need
2. Generated Concepts
3. Selected Concept
4. Created Prototype
5. Conducted Testing
6. Adjustments & Final Design

Future Work

- Integrate assembly to chair support
- Weld bearings and caster wheel
- Perform economic analysis, determine optimal manufacturing setup
- Integrate locking mechanism
- Improved tablet movement

ENME472 - Integrated Product and Process Design and Development