In this talk, two extremely important facets of soft interfaces, namely its wetting and electrohydrodynamics, will be discussed. The wetting motion of a liquid on a rigid solid is a multi-scale problem in which viscous effects at microscopic scales modify the macroscopic liquid contact angle. Our theory shows that a contact line moving on a soft elastic substrate also leads to a dynamic contact angle, but this time, in the solid. For example, we calculate the dynamic shape of the solid ridge formed under the TPCL and show that its tilt angle depends on the contact line velocity. Our theory is corroborated by dynamic wetting experiments of water on silicone gels. The second part of the talk will discuss our recent findings on the thermodynamics of soft, charged interfaces. Our theory emphasizes the need for considering explicit hydrogen ion number density in the thermodynamic description for the case where such interfaces exhibit pH-dependent charge density. Consequences of such consideration in electrostatics, charge inversion, and electrohydrodynamics of such interfaces will be discussed.