Abstract: TMS (transcranial magnetic stimulation) may be used to probe motor function non-invasively, and specifically to map muscle representations in the primary motor cortex (M1). These maps have a somatotopic organization of muscle responses by simulation location. However, it is unknown if upper extremity movements evoked by TMS are location-dependent. We sought to define the map of TMS evoked whole arm movements, and measure the effects of robotic rehabilitation on TMS measures of motor cortical efstroke.

Biography: Dr. George F. Wittenberg is an Associate Professor of Neurology in the Dept. of Neurology and Neurosurgery: Rehabilitation at the Baltimore VAMC, University of Maryland. Previously, he was the Director of the Rehabilitation Program within the Department of Neurology at Wake Forest University in Winston-Salem, North Carolina. He obtained his doctorate degree in Biology at the University of California, San Diego, in 1991 and completed medical school in 1993 at the same university. Dr. Wittenberg had further clinical and research training at Washington University, St. Louis and the National Institutes of Health (NIH). Dr. Wittenberg’s research interests include recovery of motor function after stroke and other CNS injury; transcranial magnetic stimulation; functional neuroimaging; rehabilitation robotics; movement disorders; and spasticity.