Objective

Feedback via Targeted Surveys and In-Person Interviews (74 customers contacted)

"We save all of our waste plastic in Ziploc bags hoping that a good system will pop up, and the pile is growing!"

"My local Maker-space would be very interested in a reasonably-priced recycler."

Concept Generation

Plunger Concept

Vertical Concept

PolyForm Solutions: Proteus Filament Extruder

General Need For Product

Multiple iterations of prototypes and misprints cause expensive filament to go to waste.

Estimation of Market Size

- $3 Billion Industry by 2018
- 14% Annual Growth for the next 5 years
- Target Market: Do-It-Yourself Innovators with consumer printers under $4000 (100,000+)

Engineering Characteristics

- Extrusion Rate
- External Temperature
- Material Density
- Ultimate Strength
- Melting Temperature
- Total Weight
- Pellet Size
- Desktop-Sized
- Simple to Clean
- Other Materials
- Filament Diameter
- (1.75/3 mm)

Customer Requirements

- Maintains Material Properties
- Filament Diameter
- Color Filament

Design

Operation of Product

1. Material enters through the hopper into the pipe [8]
2. Material travels down the pipe due to the rotating auger screw[1] that is powered by a wiper motor[9]
4. The material is then extruded through the nozzle to the appropriate diameter, so it may be processed by a 3D printer

Prototype and Testing

Testing Procedures

Extruder and Material Testing:
- Machined custom pipe, bearing, and nozzle
- Extruded ABS filament with raw ABS pellets
- Fed filament back through printer to create testing specimens for tensile testing

Automatic Spooler:
- Strain gauge sensor for filament slack

FEA Testing

- Temperature gradient for sizing band-heater

Test Results and Future Work

Test Results

Stress vs. Strain

- Pure ABS
- Re-extruded ABS

Future Work

- Manufacture custom parts
- Prototype grinder
- Refine auto-spooling subsystem
- Ziegler-Nichols tuning method for PID controller

Key Functionality

- Desktop sized device that accepts ground up plastic or pellets and converts the material into the dimensions required by 3D printers

Trade Offs

- RPM
- Pressure
- Extruder Rate
- Power Requirements
- Structure Stress
- Heating Rate
- Over shoot Temperature
- Filament Properties

Temperature Control

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Alt Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>0.3904666</td>
</tr>
<tr>
<td>Arduino</td>
<td>0.36307530</td>
</tr>
<tr>
<td>Hard Wired</td>
<td>0.2415846</td>
</tr>
</tbody>
</table>

Grinder Placement

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Alt Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Hopper</td>
<td>0.32068134</td>
</tr>
<tr>
<td>On Side</td>
<td>0.33670563</td>
</tr>
<tr>
<td>Detached</td>
<td>0.34421262</td>
</tr>
</tbody>
</table>

ENME472 - Integrated Product and Process Design and Development

Michael Suskin, Alex Zahn, Kelly Kempf, Ethan Nusbaum, and J. Scott Wheeler