Objective

- **General Need for Product**
 - Clean water is a basic human need
 - Clean water is a limited resource
 - Team E.C.O. provides clean shower water without using electricity

- **Market Size**
 - 700+ million people lack access to an "improved water source"

- **Customer Requirements**
 - Remove dirt
 - Filter grey-water
 - Store water
 - Reuse water
 - No overflow
 - Anti-slip surface
 - Auto-expel dirty water
 - Self-contained

- **Engineering Characteristics**
 - Type of pumping method
 - Volume of reservoir tank
 - Size of containments filtered
 - Force to actuate shower lever
 - Gravity fed filter and shower
 - Flowrate
 - Physical properties
 - Net power required
 - Permanent fixture

- **Constraints**
 - Consideration for human factors
 - Cost
 - Safety
 - Gravity fed

Concept Generation

- **Pump Concepts**
 - **Piston Pump**: Rotational motion of a bicycle will be translated to linear motion of the piston displacing water with the use of check valves.
 - **Centrifugal Pump**: Rotation of impeller pushes water to the outside of the housing and through the outflow pipe.

- **Filter Concepts**
 - **Biofilter**: Slow Sand Gravity Filter with biofilm layer.

- **Final Concept**
 - Piston pump with bicycle generating power
 - Biofilter

Prototype and Testing

- **Materials**
 - Inexpensive materials that can be procured easily from standard sources
 - PVC – tubing, piston (w/rubber-foam gasket)
 - Steel crankshaft
 - Filter – sand, gravel, charcoal, five-gallon pails

- **Testing**
 - Proof-of-concept testing for piston (demonstrated success)
 - Flow-rate testing – time to pump water from lower to upper reservoir
 - Water quality testing to verify filter effectiveness – lead acetate paper to check for hydrogen sulfide present in filtered water

- **Operation of the Product**
 - The design implements a piston pump as a mean for displacing the filtered water from the lower reservoir to the upper reservoir.
 - The rotation of the bicycle gears are converted in to a translational motion which oscillate the piston.
 - Shower head is installed in the upper reservoir for flow control.
 - Over time natural bio layer forms that removes unwanted microbial.
 - Dirty water travels through a series of elements that continually filter out particles.

Test Results and Future Work

- **PDP Summary**
 - Performed benchmark research
 - Calculated the physics involved in the system
 - Developed alternative design concepts for filter subsystem, pump subsystem, and system integration
 - Applied AHP process to select final design

- **Recommendations for Future Design**
 - Subterranean biofilter and lower water reservoir
 - Permanent fixtures for upper water reservoir and piston pump
 - Auto-expel unusable water from filter
 - Integrate heating for the shower water

- **Process Reflections**
 - Limited by project budget
 - Constrained by required mobility

Mechanical Engineering

Design Day

May 7, 2013

Team E.C.O.: G-Force Rinse & Repeat

ENME472 - Integrated Product and Process Design and Development

Meghan Hartnett, James Pritts, Laura Rogers, Elias Seyoum, Tyler Stephey