Objective

OBJECTIVE Recapture fireplace heat in order to increase the heat envelope of the room through mechanical means using the thermal energy from the fireplace.

JUSTIFICATION Common fireplaces are inefficient—often resulting in a net loss of energy from within the home. To recapture energy normally expended out the chimney, our team is designing a product to output recaptured heat into the room through mechanical means.

MARKET Fireplace installation companies are direct customers. Homeowners are end users.

Concept Generation

CUSTOMER REQUIREMENTS
- High heat output
- Low noise level
- Maintain standard fireplace aesthetics
- Does not require frequent maintenance (low serviceability)
- Turns on/off automatically
- Does not obstruct cleaning of fireplace

CONCEPT A Magnet Impeller
- Decreased risk of leaks
- Few moving parts
- Requires high fluid flow

CONCEPT B Stirling Engine
- Well-documented technology
- Low number of moving parts
- Requires frequent maintenance

CONCEPT C Dual Piston with Actuator
- Versatile with regards to power source options
- High risk of leaks or broken seals

Design

PRODUCT OPERATION
- Boiler draws heat from fireplace to create high pressure steam
- High pressure flow expands over Tesla turbine blades rotating the output shaft
- Fan is directly connected to shaft and located in fireplace output vent for forced air flow
- Fan is directly connected to output vent for forced air flow
- Output steam is condensed and recycled back to the boiler

SATISFIES CUSTOMER REQUIREMENTS
- Minimal user interaction—only add water before use
- System hidden in fireplace

Prototype and Testing

Our prototype was tested to demonstrate the difference in the output heat envelope with and without the system running. A thermal imaging camera was used to visualize the effect a fireplace fan has on the output heat envelope using a flat screen perpendicular to the fireplace.

Test Results and Future Work

PDP SUMMARY
- Designed a system that met the design objective
- Derived final design from several iterations of concept selection process
- Satisfied critical to quality customer needs by expanding heat envelope

HEAT ENVELOPE TESTING
- Without Fan
- With Fan

FUTURE WORK
- Determine turbine’s max power output under ideal conditions
- Reduce noise output
- Design less intrusive boiler shape