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Abstract: Customers of systems with high availability requirements are in some cases interested in 

migrating from buying the actual system to buying the availability of the system through “availability-

based” contracts. Availability contracts are a subset of outcome-based contracting mechanisms that include: 

Power-by-the-Hour and Performance-Based Logistics (PBL).  

Discrete event simulation is usually a preferred approach to model and predict the life-cycle 

characteristics (cost and availability) of large populations of complex real systems managed over long 

periods of time with significant uncertainties. However, while using discrete event simulation to predict the 

availability of a system or a population of systems based on known or predicted system design and support 

parameters is relatively straightforward; determining the design and support parameters that result in a 

desired availability is generally performed using search-based methods that can become impractical for 

designing systems with more than a few variables and when significant uncertainties are present. This 

paper presents a direct method that is not search based and uses an availability requirement to predict the 

required logistics, design (including reliability) and operation parameters using discrete event simulation in 

a time forward direction.  This paper also addresses managing availability requirements for systems that 

include prognostics and health management (PHM) strategies. PHM methods are incorporated into systems 

to avoid unanticipated failures that can potentially impact system safety and operation, result in additional 

life-cycle cost, and/or adversely affect the system availability.   

 

Key Words: availability, availability-based contracts, performance-based logistics (PBL), Prognostics and 
Health Management (PHM). 
 

1. Introduction 

Availability is the fraction of time that a service or a system is functional when it is requested for use or 

operation. Availability accounts for both the frequency of the failure (reliability) and the ability to restore 

the service or system to operation after a failure (maintainability). The maintenance ramifications, generally 

translate into how quickly the system can be repaired upon failure, are usually driven by the logistics 

management and are directly influenced by the maintenance policy used. The frequency of failure is related 

to the reliability of the system, i.e., how long it will be operational (i.e., “up”) before it fails.  

Many types of availability can be measured (e.g., inherent, achieved, operational, etc.) for parts, 

subsystems and systems. This paper focuses on the operational availability (AO) since it is commonly used 

in availability contracts. AO accounts for all types of maintenance and logistics downtimes. AO is the ratio of 
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the accumulated uptime and the sum of the accumulated uptime and downtime: 
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where uptime (UT) is the total accumulated operational time during which the system is up and running and 

able to perform the tasks that are expected from it. Downtime (DT) is generated when the system is not 

operating when requested due to repair, replacement, waiting for spares or any other logistics delay time. 

The summation of the accumulated uptimes and downtimes represents the total operation time for the 

system.  Note that the availability in (1) is not steady-state, it depends on when (during the life of the 

system) the observation is made, to.   

Customers of mission, safety and infrastructure critical systems such as avionics, large scale 

production lines, servers, and infrastructure service providers with high availability requirements are 

increasingly interested in buying the availability of a system via “availability-based contracting,” instead of 

actually buying the system itself. Availability-based contracts are a subset of outcome-based contracts [1]; 

where the customer pays for the delivered outcome, instead of paying for specific logistics activities, 

system reliability management or other tasks. Well known availability and outcome-based contracts and 

contract mechanisms include the Availability Transformation: Tornado Aircraft Contract–ATTAC [2], PBL 

– Performance-Based Logistics [3] and Power by the Hour [4].  

1.1 Availability Optimization 

Availability requirements are usually used as the constraint or an objective function within optimization 

problems, e.g., [5-9], where the decision parameters can be reliability, preventive maintenance scheduling, 

system configuration, inventory policies  and the objective functions are a derivate of total life-cycle cost 

(e.g., downtime cost, maintenance cost, holding cost, or a combination of these).  

Examples of existing work associated with maximizing a cost-benefit function that combines the 

accumulated life-cycle costs associated with a specific system’s management (e.g., logistics, maintenance, 

reliability, etc.) and the availability achieved include [6,10-13]. Multi-objective methods can also use 

discrete event simulation to assess the future costs, availability or redundancy level as their objective 

function [14].  However, in the majority of optimization works the goal is to maximize the reliability or 

availability at specific points in time (or minimizing downtime costs). Often these works consider 

availability as a function with fixed parameters and total life-cycle cost is calculated using simulation based 

methods (Monte-Carlo, heuristic algorithms) at each decision point. The need for a direct method arises 

from the fact that, when the objective function is a stochastic function related to the total life cycle, it is not 

practical to calculate it for an uncertain future at any time step.   

The majority of the existing work represents the availability using analytical models based on different 

fixed-value parameters describing inventory, reliability and maintenance (e.g., [5,8,15]).  Some recent 

contributions have addressed the stochastic nature of different parameters and look at availability as a state 

for the whole system or its part’s and model’s transitions to other states via Markov Chains [13,16,17], 
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state machines [18] and Petri nets [19].  In all of these works there is minimal attention paid to variability 

of each member of the fleet and the stochastic nature of each parameter (or lack of knowledge of the 

distributional properties of parameters) as well as shrinking of uncertainty as time progresses.  The existing 

body of work proves the feasibility of availability optimization for simplified life-cycle scenarios and 

system characteristics.  However, when availability needs to be evaluated for large populations of complex 

systems, over long term support, and when many uncertain design and support parameters are considered, 

direct use of discrete event simulation is the most flexible approach for modeling and analysis of 

availability, and performance analysis of different simulation scenarios [20]. The direct approach simulates 

the reality of operational decision making by focusing on existing data accumulated during operation. This 

flexibility allows discrete event simulation to be also used for the calculation of the stochastic objective 

function as an essential step of search-based optimizations [14]. 

Discrete event simulation is capable of simulating a population of systems through each system 

instance’s unique life cycle. Discrete event simulations do not necessarily require analytical equations to 

determine the unknown system parameters (or any other quantity of interest) as a function of other known 

parameters, since the sequence and outcome of the events are generated and accumulated in simulation 

time. These capabilities become crucial when uncertainties are included, where each sample of the same 

quantity, i.e., system parameter, could result in a different event outcome, producing a different sequence of 

events (sample path) and results for every system instance.   

Availability requirements can be satisfied by running discrete event simulators in the forward direction 

(forward in time) for many permutations of the system parameters and then selecting the system parameter 

values that generate the required availability output, e.g., [13,14,21]. There have also been attempts to 

perform reverse simulation (run discrete event simulators backwards in time) in software and project 

management applications where task planning is the focus rather than degradation of material [22,23].  

 The computational burden associated with search-based approaches makes them expensive for real-

world problems (particularly for real-time problems with what-if scenarios). These methods also lack 

accommodating an availability requirement that is represented as a probability distribution. Designing 

products (and their support logistics) for availability contracts, includes availability optimization but with 

different assumptions than most existing works. The existing availability optimization approaches 

described previously in this section all seek to determine system parameters that maximize availability at a 

specific point in time rather than guaranteeing that a minimum availability requirement is met at all times 

during the support life of the fleet of systems.   

This paper presents a non-search based, non-iterative, discrete event simulator based direct 

methodology that uses an availability requirement expressed as a probability distribution applied at all 

times during a system’s support life as an input to the process of determining the management of a system 

(as opposed to an availability output that is a consequence of system management and logistics inputs). The 

next section describes the problem we are solving and our solution approach.  Section 3 provides case study 

examples that demonstrate the approach and its application to systems that include prognostics and health 
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management (PHM).  Section 4 discusses shortcomings and possible extensions of the methodology. 

2. Solution Approach 

Using conventional discrete event simulator models, availability is computed based on known or estimated 

system reliability, operation and logistics parameters, etc. The goal of the methodology proposed in this 

paper is to reverse the problem. In other words, to create a methodology that determines the necessary 

system reliability, operational parameters, and/or logistics management parameters to meet a specific 

availability requirement.  The methodology described in this section is a direct method, i.e., it does not 

search the parameter space for design parameters that satisfy the availability requirement or iterate the 

value of parameters in order to satisfy the availability requirement, it solves for the parameters directly. 

The methodology introduced uses the availability requirement to compute and impose the necessary 

uptimes and downtimes throughout the system’s life using a discrete event simulator. Then, it uses the 

imposed uptime and downtime values to solve for the unknown system parameter. Figure 1 shows the steps 

to formulate and execute the proposed solution.  Note there is no feedback mechanism in shown in Figure 1 

because this is a direct solution method.     

2.1 Interpreting the Availability Requirement and Where it is Imposed 

A realistic availability requirement is generally expressed as a probability distribution. Since, even when a 

contract specifies the availability requirement as a single value, the interpretation of this single value either 

leads to considering the average availability of a population of systems, i.e., the average of a distribution; or 

the single value is the minimum availability of all system instances within the population. These 

interpretations are consistent with the fact that the reliability of the product or system is represented as a 

probability distribution (or, more accurately a set of probability distributions each corresponding to a 

different relevant failure mechanism); thus using a logistics management plan that is common across the 

 

Determine where/when the availability 
requirement is imposed on the system

System availability requirement expressed (most 
generally) as a probability distribution

Select design and/or support parameter to solve for

Could be specified by 
an availability contract

Parameters affecting both downtime and 
uptime (Type II parameters)

Parameters affecting either
downtime or uptime (Type I parameters) 

Start with a guess of the selected system 
parameter, to initiate the simulation

Determine the relationship between the known 
system parameters, required availability and 
the selected unknown system parameter

Solve for the selected system parameter

Impose the selected system parameter 
requirement on the downtime and uptime

Impose a downtime or uptime requirement on 
each selected design and/or support parameter 

Determine the relationship between downtime or 
uptime and the selected system parameter

Solve for the selected system parameter

Update the imposed downtime or uptime

 
 

Fig. 1: Solution Approach (note, this paper only addresses Type I parameters, 
see [24] for a treatment of Type II parameters) 
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population, each system instance will have a different availability depending on the failure dates of the 

subsystem instances that comprise it and operational profile variations.1 

To generalize the model, a conservative approach is adopted by fulfilling an availability requirement at 

all times during the entire support life of the system. For the remainder of this discussion it is assumed that 

the availability requirement implies that the operational availability (AO) should not drop below the 

availability requirement value at any time during the entire support life (assuming that the system’s 

operation does not start in the down state).  

As shown in Figure 2, AO always decreases during downtimes and increases during uptimes. In other 

words, AO reaches its local minimum values at the end of every downtime (e.g., points 1 and 2 in Figure 2). 

Thus, if the availability requirement is satisfied at the end of every downtime (i.e., minimum AO values 

satisfy the requirement), it will be satisfied at all times during the support life of the system. Therefore the 

approach is to impose the availability requirement at the end of every downtime. 

2.2 Determine the Type of System Parameter 

In the context of design for availability, two distinct types of system parameters exist: parameters affecting 

either uptime or downtime (but not both) – Type I parameters, and parameters concurrently affecting both 

uptime and downtime – Type II parameters.  Only Type I parameters are addressed in this paper.  See [24] 

for a treatment of Type II parameters.   

For Type I parameters, one of the two quantities (e.g., uptime) is known and can be determined from 

the known system parameters, while the other quantity is unknown (e.g., downtime) and dependent on the 

selected unknown system parameter.  

For Type II parameters, a change in the value of the parameter could produce a change in both uptime 

and downtime. Both quantities (uptime and downtime) are dependent on this type of parameter. When one 

of these system parameters is unknown, then both uptime and downtime are unknown. This means, a 

relationship between the known system parameters, required availability and the selected unknown system 

parameter needs to be defined, to solve for this type of parameter. 

                                                 
1 Another possible interpretation of an availability requirement represented as a probability distribution is that it 
represents a histogram of the requirements on all subsystems that make up a system.  Critical subsystems have higher 
required availability, while less critical subsystems may have a lower required availability.  

Downtime2Uptime2Downtime1Uptime1

Time (to)

...

1 2
 

Fig. 2:  Availability Variations as a Function of Observation Time 
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2.3 Type I Parameter Solution 

The AO is a function of accumulated uptimes and downtimes. Therefore, imposing an availability 

requirement means either imposing an uptime requirement while the downtime is generated by the system 

parameters; or vice versa. Note, for Type I parameters either an uptime or a downtime requirement is 

imposed, not both.  The imposed downtimes or uptimes are computed at defined times or events as a 

function of the required AO. 

For the remainder of the discussion in this section we will assume that downtimes are imposed to 

satisfy an availability requirement (all uptimes are ignored). In this case, by generating the appropriate 

downtimes, only the system parameters that are responsible for generating the downtimes can be computed 

as outputs; other system parameters that do not influence downtimes should be fixed, i.e., they are used 

only as inputs.  The imposed downtimes are given by, 
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Equations (2) and (3), which are derived from (1), express examples of the relationships that are used 

to impose the first downtime (DT1) and a kth downtime (DTk), respectively. Where AO represents the 

specified availability requirement, and UTj and DTj correspond to the jth uptime and downtime respectively.  

The criterion of imposing either an uptime or downtime requirement is based on the unknown system 

parameter. For example, if the uptime remains constant while varying a unknown system parameter, the 

downtime is imposed to meet the availability requirement; and vice versa.   

Assuming that the unknown system parameter that we are interested in computing to meet the 

availability requirement are explicitly related to the downtimes, we need to establish a relationship between 

the unknown system parameter and the imposed downtimes. Based on this relationship, the unknown 

system parameter can be computed and updated as soon as the downtime values are determined. 

Basically, we have two unknown quantities: the unknown system parameter, and the downtime. 

Therefore, we need to establish two relationships. Since availability is by definition a function of uptime 

and downtime; therefore we can solve for downtime as a function of the required availability and uptime, 

which generates the first relationship; which is used to solve for the downtime. Also, since the types of 

system parameters addressed here explicitly affect the downtime, then the unknown system parameter can 

be expressed as a function of downtime; hence the second relationship. To summarize, the downtime is 

imposed through the availability requirement, then the imposed downtime quantity is used to solve for the 

unknown system parameter.  A similar approach could be adopted if the selected system parameter affects 

the uptime (instead of downtime). 

For demonstration, we assume that the unknown system parameter is explicitly dependent on the 

required downtime, and the rest of the known system parameters are responsible for generating the uptime.  
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Although the procedure of defining the relationship between system parameter and required downtimes 

has been discussed, the challenge here is that availability is not determined by a single downtime value, but 

rather a sequence of downtime values that are not necessarily identical; each resulting in different 

computed values for the system parameter. As a result, by the end of the simulation (i.e., the end of the 

system’s contracted support period) we could generate multiple values for the same system parameter with 

no way to determine which value to use to fulfill the availability requirement.  Our objective is to select a 

single downtime value that is the maximum allowable downtime to meet a specific availability 

requirement, and then use this quantity as a constant downtime value that will fulfill the availability 

requirement at every point throughout the entire support life. To derive the maximum allowable downtime 

value, we have explored two scenarios. 

The first scenario is illustrated in Figure 3a, where the first imposed downtime (DT1) duration is 

shorter than the second imposed downtime (DT2), where both downtimes have been imposed based on the 

same availability requirement. In this case, averaging the downtimes would generate an average downtime 

(DTAverage) that is larger than DT1, thus the availability requirement will not be fulfilled at the end of DT1,  
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In this situation the maximum allowable downtime duration that the system can accommodate, without 

failing to satisfy the availability requirement, is constrained by the value of DT1. Therefore, the DT2 value 

should be substituted for DT1. 

The second scenario is illustrated in Figure 3b, where DT1 is larger than DT2. In this case, averaging 

the two downtimes would generate a DTAverage, which is smaller than DT1, thus the availability requirement 

will be fulfilled at the end of DT1,  
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Notice that the availability requirement at any specific time includes all accumulated previous downtimes. 

Thus, when using the average value at the end of DT2, the availability requirement will still be satisfied 

since the accumulated averages are just the accumulated downtimes, i.e., summation of DT1 and DT2.  

Time

UT1 UT2UT2DT1DT1
DT2DT2

1 2

(a)  DT1 < DT2

Time

UT1 UT2DT1
DT2

1 2
Time

UT1UT1 UT2UT2DT1DT1
DT2DT2

1 2

(b)  DT1 > DT2

 
 

Fig. 3:  Downtime Requirement Scenarios 
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Therefore, in this situation the maximum allowable downtime duration that the system can accommodate 

without violating the availability requirement is the average downtime given by, 
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Figure 4 summarizes both scenarios in one general case. The model imposes the required downtime to 

meet the availability requirement, and then it evaluates the current downtime with respect to the previous 

one. If the currently imposed downtime is larger than the previous one, then the model substitutes the 

current downtime value for the previous one. But if the currently imposed downtime is shorter than the 

previous one, then the model averages the current downtime value with all previous ones. The goal of this 

procedure is to generate one unique value of the maximum allowable downtime that meets the availability 

requirement. Note, during this procedure, the unknown system parameter gets updated as soon as the 

downtime values are updated.2  

If the unknown system parameter is explicitly generating the uptime (instead of the downtime); then, 

by analogy, a similar procedure is used to impose and update the uptimes to derive one unique value of the 

system parameter.  Once the final value of the downtime (or uptime) is imposed and updated, the unknown 

system parameter is solved for. 

3. Application of the Methodology 

The methodology described in Section 2 has been implemented within an existing discrete event simulation 

model.  The model used [25,26] is a discrete event simulation that follows a population of sockets3 through 

their lifetime from first line replaceable unit (LRU) installation in the socket to the retirement of the socket. 

It is a stochastic simulation (implemented as a Monte Carlo model) of a timeline where specific events are 

added to the timeline and the resulting event order and timing can be used to determine the resulting 

number of failures avoided, life-cycle cost and availability (as an output). 

                                                 
2 This is similar to a “greedy algorithm” that follows the problem solving heuristic of making the locally optimal choice 
at the end of each downtime with the hope of finding a global optimum. 
3 A socket is the place in a system where an LRU resides. A socket may be occupied by one or more LRUs during the 
support life of the system depending on the failure rate of the LRU.  The imposed availability requirement is effectively 
on the socket (not the LRU), since an LRU could fail, be repaired and be placed into a different socket after repair. 

Time

UT1UT1 UT2UT2DT1DT1 DT2 DTkDTk
……

( )( )
k

TDTD1-k
TD k1-k

k

+
= 1-kk TDTD =

If  DTk < DTk-1 If  DTk > DTk-1

UTk

 
 

Fig. 4: General Case of Updating Downtime Requirement 
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In the discrete event simulator, failures of the LRUs in the sockets are modeled by sampling time-to-

failure (TTF) distributions corresponding to the failure mechanisms that are relevant.  When a failure 

occurs the LRU is removed from the socket and replaced with a spare (if one is available), the failed LRU 

may then be repaired and returned to the spares pool or discarded.  The length of time to perform the 

maintenance activity depends on when in the operational cycle of the system the failure occurs, whether the 

maintenance event was unscheduled or scheduled, and the availability of spares. 

The discrete event simulator used also models the impacts of including prognostics and health 

management (PHM) [27] within a system.  PHM methods (similar to condition-based maintenance (CBM)) 

are incorporated into systems to avoid unanticipated failures that can potentially impact system safety and 

operation, and allows the conversion of traditionally unscheduled maintenance (or fixed interval 

maintenance) to scheduled maintenance performed based on the condition of the item. To determine if a 

maintenance event is scheduled or unscheduled, a probability distribution associated with the effectiveness 

of the PHM approach is constructed using a combination of both the time-to-failure (TTF) distribution 

associated with the LRU and the failure distribution associated with the particular PHM approach. The 

construction is defined differently for each PHM sustainment approach (e.g., data-driven, model-based,), 

see [25] for a detailed discussion of these models.  

Figure 5 shows the process used to generate a distribution of system parameter values using a discrete-

event simulator. The Monte Carlo implementation of the model samples the required availability 

distribution and other quantities that may be described using probability distributions, and then uses the 

quantities to solve for a value of the system parameter using the methodology described in Section 2. This 

process is repeated for each socket in the population. The resulting system parameter distribution (the 

output of the model) is the required quantity to meet the availability requirement (the input to the model). 

3.1 Determining Type I Parameters 

The objective in this case study example is to determine the spares replenishment lead time, i.e., inventory 

Events = cause transitions from operational (up) 
to non-operational (down) and vice versa, e.g., 
failures, repairs, preventative maintenance, etc.

EOS = End of Support of the system

Runs from time = 0 to EOS

Samples
All other design and 

support parameters except 
those being solved for

Event 1 Event 2

Time

Discrete Event Simulator

Compute the 
value of system 
parameter(s) of 
interest from the 
final downtime 
and/or uptime

Sample Again

EOS

Availability requirement
Sample

Update the imposed downtime or 
uptime (Section III.4)

System output 
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cost, return on 
investment, etc.

Selected System
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Selected System
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Output Metric 2Output Metric 2

Output Metric 1Output Metric 1

Input Parameter 3Input Parameter 3Input Parameter 2Input Parameter 2Input Parameter 1Input Parameter 1
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Update the imposed uptime or 
downtime

Compute and 
update the final 
uptimes or 
downtimes, and 
solve for the 
selected system 
parameter 

Output the selected 
system parameter

All other system parameters 
except those being solved for

 
 

Fig. 5: Solution Process 
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lead time (ILT), to fulfill a specific availability requirement.4 The case study inputs are provided in the 

Appendix, including the LRU description, inventory management, and operational profile.  

In this example, the ILT is the unknown system parameter, where ILT is the amount of time it takes to 

receive replenishment spares when additional spares are ordered at the inventory spares threshold (ST) 

value (i.e., minimum quantity of held spares); this example case assumes that the inventory downtime 

(when the inventory runs out of spares, and the system is down waiting for replenishment spares) is larger 

than any maintenance downtime. We also assume that once the spares are received, the spare can be 

immediately installed in the system.  Figure 6 shows the relationship between the various inventory 

parameters in this example where MDT is the maintenance downtime.  

The ILT requires imposing a downtime requirement since varying the ILT only affects the downtime 

values, i.e., how long the system will be down waiting for spares to be replenished.  Varying the ILT 

generates different IDT values; however the uptime values remain constant since they are primarily a 

function of the duration corresponding to using inventory ST; where the duration corresponding to using 

inventory held spares is a function of the duration corresponding to using the initial spares (IS) and duration 

corresponding to using the replenishment spares (RS). The ILT only defines the start of the next uptime, but 

it does not define the uptime duration. 

Because, the IDT is purely a function of ILT and the duration to use the ST, where STT is the 

corresponding period of time to use all remaining spares; the IDT only depends on how low the inventory 

level is allowed to drop before ordering additional spares and how long it will take to receive those spares, 

 1IDTSTTILT   (7) 

For this example we assume that the MDT are given and cannot be modified, i.e., the maintenance lead 

time, replacement time and repair time are specified as inputs.  To fulfill the availability requirement at the 

end of the first IDT; IDT1 should satisfy the Ao requirement (as defined in (1); where IS-MDT1 corresponds 

to the accumulated uptime and IS+IDT1 corresponds to the sum of the accumulated uptime and downtime), 

thus satisfy the following equation: 

                                                 
4 A verification of the methodology was performed using this example in [28], using the following steps: 1) using the 
availability distribution requirement as an input to the method, determine the required ILT distribution (output). 2) Use 
the generated ILT distribution as an input to the existing discrete event simulation (described in the introduction to this 
section) to predict an availability distribution as an output. 3) Compare the availability distribution input requirement to 
the availability distribution determined as an output. The first step is sufficient to determine the ILT distribution. The 
second and third steps were performed to qualitatively verify the methodology.  

IS RS

Time

IDT1

ST
ILT

IDT2

MDT1 MDT2 MDT3

Fig. 6: Implication of the Inventory Model Parameters on the Timeline 
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Once IDT1 is determined, the ILT can be computed by satisfying (7).  Finally, the ILT is updated as the 

downtime requirement gets updated throughout the entire support life.  

The required availability distribution used as an input for this example case is shown in Figure 7a.  

Considering an availability requirement that is expressed as a probability distribution makes the process of 

determining the necessary system parameters to meet the availability requirement challenging, since every 

system instance could have a different availability based on the sampled value from the probability 

distribution (other interpretations of the availability requirement are possible, see Section 2.1). This process 

is illustrated in Figure 5 and discussed in the introduction of this section. Figure 7b shows the computed 

ILT that is required to meet the availability requirement. 

Determining the maximum allowable ILT for a specific availability requirement could be used to 

improve logistics management and potentially reduce life-cycle cost. If the availability drops below a 

specified threshold value, a cost penalty could be assessed; determining upfront the appropriate ILT could 

avoid these potential cost penalties. Also, knowing the maximum allowable ILT information, system 

supporters could require their suppliers to deliver within a specific lead time. 

3.1.1. Unscheduled maintenance vs. data-driven PHM 

In this section we want to determine the appropriate spares replenishment lead time, i.e., inventory lead 

time (ILT), to fulfill the availability requirement specified in Figure 7a for an unscheduled maintenance 

approach and a data-driven PHM approach applied to the same system. 

Simulating with the imposed availability (input) requirement shown in Figure 7a, the ILT (output) 

(a) (b)  
 

Fig. 7: (a) Required Availability Distribution (input to the model). (b) Computed Maximum 
Allowable Inventory Lead Time (ILT) in Operational Hours, for an Unscheduled Maintenance 

Policy 
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satisfying this requirement was determined for the unscheduled maintenance policy, Figure 8, the light gray 

histogram bars (this distribution is the same as Figure 7b).  The methodology has also been applied to the 

same system managed using a data-driven PHM approach.5   

The input data (provided in the Appendix) was used for the data-driven PHM approach; a prognostic 

distance of 600 operational hours was used and a symmetric triangular distribution with a width of 500 

hours was assumed to represent the effectiveness of the data-driven PHM approach (see [27] for details of 

modeling the PHM uncertainty).  Simulating with the imposed availability requirement shown in Figure 7a, 

the maximum allowable ILT satisfying the contract requirement was determined, and the generated ILT 

probability distribution is shown in Figure 8 (black histogram bars).  

In this example, the data-driven PHM approach allows for a larger ILT (mean = 13,936 operational 

hours), compared to the unscheduled maintenance case (mean = 12,961 operational hours).6  In other 

words, using a data-driven PHM approach allows a given availability requirement to be met if ILTs are 

longer, or alternatively stated, the use of PHM would allow a supply chain with longer ILTs to be used. The 

use of a data-driven PHM approach has shifted the maximum allowable ILT distribution by approximately 

1000 hours to the right. This result is due the fact that data-driven PHM has provided early warning of 

failures; therefore creating the opportunity to transition maintenance actions from unscheduled to scheduled 

events reducing the accumulated operational downtime. For a fixed ILT, this would result in an improved 

operational availability of the system. However, since in this example the same availability requirement 

                                                 
5 Data-driven PHM means that one or more attributes of the system are directly observed and those observations are 
used to determine the health of the system (e.g., monitoring for precursors to failure, use of canaries, anomaly 
detection).  See [27] for the details of data-driven PHM. 
6 From Figure 8, there is an 88% probability that a sample from the ILT distribution using a data-driven PHM (black 
bars) will be greater than a sample from the ILT distribution using an unscheduled maintenance (light grey bars). 
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Fig. 8: Computed Maximum Allowable Inventory Lead Time (ILT) for an Unscheduled 

Maintenance Policy, and for a Data-Driven PHM Approach.  Both Maintenance 
Approaches Satisfy the Same Availability Requirement 
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was imposed on both cases (unscheduled maintenance and data-driven PHM), thus the accumulated 

operational downtime was used as a fixed quantity (imposed by the contract availability requirement); then 

the avoided unscheduled maintenance downtime was added to the IDT, resulting in a larger allowed ILT. 

In this case study, both approaches, unscheduled maintenance and data-driven PHM, we were able to 

determine the unknown system parameter (the maximum allowable ILT in this case) satisfying the 

availability requirement, but data-driven PHM allows larger ILTs compared to the unscheduled 

maintenance policy case. 

4 Summary and Discussion 

This paper presented a new direct method based on discrete event simulation for using an availability 

requirement to determine unknown system design and support parameters; the approach is general and 

could be applied to any type of system, even when uncertainties are included and the availability 

requirement is represented as a probability distribution.  

A demonstration of the determination of the parameters that affect either uptime or downtime 

(inventory lead time (ILT) was used as an example) was provided. The demonstration shows how the 

necessary logistics management and reliability information for a system could be determined to meet a 

specific availability requirement. The application-specific example results show that the model predicted a 

larger allowable ILT for the data-driven PHM case relative to unscheduled maintenance when both 

maintenance approaches are constrained to meet the same availability requirement. Also, the example 

demonstrates that the use of PHM in cases where availability requirements are imposed can provide value 

beyond the commonly articulated failure avoidance and minimization of lost remaining useful life. An 

ability to determine this type of information could be crucial to availability contracts and to any system 

with high availability requirement. 

The results presented in this paper are focused on deriving single system parameters that are necessary 

to meet a specific availability requirement. However, the methodology could be extended to address the 

concurrent determination of multiple system parameters; which would involve two cases. First, if system 

parameters are dependent (i.e., if a relationship between the unknown system parameters could be 

determined), then the methodology could be used to solve for the unknown dependent system parameters. 

Second, if the system parameters are independent, then the application of an optimization approach would 

be required since the established relationships that are used to solve for the unknown system parameters 

may have more unknowns than the actual number of derived equations. However, even in this case, the 

methodology is still efficient in terms of reducing the large and complex optimization “search-based” 

iterative problem, where every generated set of system parameters may or may not satisfy the availability 

requirement; to a basic “non-search-based” problem where the unknown system parameters have to be 

optimized to satisfy one single predefined relationship. 

The analysis presented in this paper makes several simplifying assumptions that could be addressed in 

future work.  Most notably this work assumes that there is no redundancy in the system.  To account for 
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redundancy, the model must analyze cases where a unit’s failure does not necessarily generate an 

operational downtime of the system, since other redundant units could substitute for the failed unit and 

maintain the operation of the system while the failed unit is being repaired or replaced.  An extension of the 

discrete-event simulation model to handle redundancy is possible and could be performed by concurrently 

modeling all redundant units and only accounting for downtime when all redundant units are non-

operational.  This paper provides a method of guaranteeing that an availability requirement is met at all 

times, however, the system provider or manufacturer’s target may be to minimize life-cycle cost, so there 

may be situations (depending on the size and form of incentives and penalties specified in the contract) in 

which the system’s availability is allowed to drop below the required availability. 
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Appendix – Case Study Data Inputs 

This appendix provides model inputs and assumptions that are used for the case study examples presented 

in this paper.  The LRU used in this example is an avionics multifunction display (MFD). The operational 

profile is summarized in Table A.1 [26], and a 20 years support life was chosen based on [29]. 

 

Table A.1: Operational Profile 
Factor Multiplier Total 

Support life: 20 years 2,429 flights per year  48,580 flights over support life 

7 flights per day 125 minutes per flight 875 minutes in flight per day 

45 minutes turnaround 
between flights  

6  preparation periods per day 
(between flights) 

270 minutes between flights per 
day 

 

The assumed reliability for this case example, i.e., time-to-failure (TTF), of the LRU is modeled as a 

Weibull distribution with β=1.1, η=200 operational hours and γ=9000 operational hours.  Table A.2 

summarizes the spares inventory (per socket) assumptions.  

Table A.2: Spares Inventory 
Factor Quantity  

Initial spares purchased for each socket 5 

Threshold for spare replenishment 
≤ 1 spares in the inventory per 

socket 

Number of spares to purchase per socket 
at replenishment 

4 

Billing due date when ordering additional 
spares 

2 years from purchase date 
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