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Abstract:  This paper uses a discrete event simulation based direct method that allows an 
availability requirement to be used to predict required logistics, design and operation 
parameters. Parameters that affect both downtime and uptime are addressed in this paper.   
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1. Introduction 

A direct method based on discrete event simulation that uses an availability requirement 
to determine unknown system design and support parameters has been developed [1]; the 
approach is general and can be used when uncertainties are included and the availability 
requirement is represented as a probability distribution. Figure 1 in [1] summarizes the 
general steps to formulate and execute this methodology.     

Two distinct types of system parameters exist: Type I affecting either uptime or 
downtime (but not both), and Type II concurrently affecting both uptime and downtime. 
Type II parameters are addressed in this paper (Type I parameters were addressed in [1]). 

2. Determining Type II Parameters 

For Type II parameters, a change in the value of the parameter produces a change in both 
uptime and downtime, there are three unknown quantities: 1) the unknown parameter, 2) 
the downtime and 3) the uptime; and three relationships need to be established to solve for 
the unknown quantities. The uptime can be expressed as a function of the unknown 
parameter; to generate the first relationship. Secondly, the unknown parameter explicitly 
affects the downtime, so downtime can be expressed as a function of the unknown 
parameter. Availability is by definition a function of uptime and downtime; hence the 
third relationship. A closed-form analytical solution cannot be determined when solving 
for the unknown parameter from known quantities (e.g., probability distributions) since 
the sequences of the accumulated event outcomes are only generated as the simulation 
progresses through time. 

Here we apply the methodology to determine the minimum allowable reliability, i.e., 
the time-to-failure (TTF) of the line replaceable units (LRUs) that is necessary to meet the 
availability requirement. We assume that, the reliability of each LRU is represented by its 
TTF, where each TTF corresponds to the period of time until the occurrence of the next 
actual failure. To see that TTF is a Type II parameter consider the following scenario: 
replenishment LRUs will be delivered one year from now and the inventory is currently 
out of LRUs. The system (the socket), that is drawing LRUs from the inventory, will be in 
the up-state as long as the current LRU doesn’t require replacement, thus the system 
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uptime depends on the TTF of the current LRU. Also, the system downtime could be 
minimized if the LRU currently in the socket does not require replacement until the 
replenishment spares are delivered (e.g., one year from now). However, as soon as the 
LRU requires replacement, the system will be down until additional spare LRUs are 
received. Thus, system downtime is also dependent on the TTF of this LRU. 

To demonstrate the derivation of the TTF for a specific availability requirement, the 
methodology has been implemented within the discrete event simulation. The model 
samples the required availability distribution and other quantities, and uses the quantities 
to solve for a value of the unknown parameter. This process is repeated for each socket in 
the population. The resulting parameter distribution is the required quantity to meet the 
availability requirement. The case study inputs are: 3 initial spares for each socket, the 
threshold for spare replenishment is ≤ 1 in the inventory per socket, 2 spares per socket 
are purchased at replenishment, and the spare replenishment lead time (ILT) is 18 months. 

The sampled TTF values are used to predict maintenance events. In the unscheduled 
maintenance case, the sampling of the TTF values predicts the date of the next 
maintenance event associated with a failure of a system. Spares are drawn from the 
inventory as needed to support maintenance. Once the inventory reaches its threshold 
value, additional spares are ordered, and the replenishment spares are delivered after the 
ILT. Figure 1 illustrates this scenario, where MDT is maintenance downtime, ST is the 
spares threshold (once the inventory level drops below this value, additional spares are 
ordered), and IDT is inventory downtime (the system is down waiting for spares). 

Notice that the accumulated uptime (UT) accounts for all system’s uptimes. This 
includes the system’s uptime while using the inventory initial spares (IS) and the system’s 
uptime while using inventory replenishment spares (RS). The RS could be ordered 
multiple times as needed, 

 ( )( ) ( )( )∑∑ += TTFRSTTFISUT  (1) 

The accumulated downtime (DT) includes the maintenance downtime (MDT) and the 
inventory downtime (IDT),  

 ( )( )( )∑ ∑∑∑ ∑ +=+= MDTTTFST-ILTMDTIDTDT   (2) 

The summations in (1) and (2) do not refer to the analytical summations, but to the 
accumulation of sequential events, which are determined as the simulation progresses 
through time. Also, the model is probabilistic, this means each sample of the same 
quantity, i.e., system parameter, could result in a different event outcome.  

The operational availability is the accumulated uptime over the total operational time 
(i.e., sum of the total accumulated uptime and downtime), 
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For example, the kth TTF value could be derived by combining (1), (2) and (3). The kth 
TTF corresponds to the kth downtime, where the kth downtime could be a maintenance 
downtime, inventory downtime, or any other logistics downtime. The summations in (4) 
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Figure 1:  TTF Implication on the Operational Timeline 
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do not refer to analytical summations, but to the accumulation of events outcomes and 
sequences. Therefore, the right side of (4) does not explicitly include the “k” subscript, 
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The modeling of the operational timeline illustrated in this section is not unique i.e., 
(1), (2) and (4) could vary. Although, different models could provide different equations, 
the steps of the procedure remain the same.   

After every downtime, the TTF is computed. Figure 2 illustrates the process of 
updating the computed TTFs. After every downtime, the computed TTF is compared to 
the previous value; if the current value is greater than the previous one then the current 
value is used. But if the current value is less than the previous one, then the current one is 
substituted for the previous value. Once, the current TTF value is updated, this new TTF 
requirement is imposed on the uptime and downtime values through (1) and (2). Finally, 
the model uses the updated TTFs, UTs, and DTs to compute other quantities of interest. 

The availability requirement considered in this example case is shown in Figure 3a. 
Figure 3b shows the resulting TTF distribution (for unscheduled maintenance). The 
required availability distribution and other quantities (inputs) that may be described as 
probability distributions are sampled and used to solve for a single value of TTF. This 
value represents the minimum TTF value (minimum allowable reliability) that is 
necessary to meet the sampled required availability in the environment defined by the 
sampled values of all the other input quantities. This process is repeated for each socket in 
the population, resulting in a histogram of minimum allowable TTFs. Note a verification 

(a) (b)  
 

Figure 3: (a) Required Availability Distribution; (b) Computed Minimum Allowable 
Reliability (TTF) in Operational Hours, for an Unscheduled Maintenance Policy 
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Figure 2:  Updating the TTFs, UTs and DTs 
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of this process was performed in [2].  Using the same inputs defined in [1] for data-driven 
PHM, a determination of the TTF to fulfill the same availability requirement in Figure 3a 
for an unscheduled maintenance approach and a data-driven prognostics and health 
management (PHM) approach applied to the same system has been performed – Figure 4. 

Figure 4 shows the resulting TTF distributions using unscheduled maintenance and 
data-driven PHM, in light grey and black respectively.  By comparing the resulting TTF 
distributions for unscheduled maintenance and data-driven PHM approaches, data-driven 
PHM has allowed a smaller TTF requirement. Thus using a data-driven PHM approach 
relaxes (relative to unscheduled maintenance) the required TTF to meet the imposed 
availability requirement. This is a powerful result since the methodology not only derives 
the necessary system parameters for a specific availability requirement, but it also reflects 
the impact of a PHM approach on the selected system parameters. 

3 Discussion 

It is important to note that the process described is not iterative. While the methodology 
includes operations that are repeated for every time step, every update of the unknown 
parameter happens at a different (later) time. Conventional iteration would imply that 
operations are repeated at each event to improve the result, or that the whole process 
(through all events) was repeated to improve the result – neither of these are the case.  
Because the process is not iterative, it is computationally simple and straightforward, the 
solution always exists and converges, and a real-time assessment could be performed. 
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Figure 4: Computed Minimum Allowable Reliability (TTF) Distribution for Unscheduled 
Maintenance and Data-Driven PHM to Meet an Availability Requirement.  Both 

Maintenance Approaches Satisfy the Same Availability Requirement. 


