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ABSTRACT 

Due to the nature of the manufacturing and support activities   
associated with long life cycle products, the parts that products 
required need to be dependably and consistently available. 
However, the parts that comprise long lifetime products are 
susceptible to a variety of supply chain disruptions. In order to 
minimize the impact of these unavoidable disruptions to 
production, manufacturers can implement proactive mitigation 
strategies. Two mitigation strategies in particular have been 
proven to decrease the penalty costs associated with disruptions: 
second sourcing and buffering.  Second sourcing involves 
selecting two distinct suppliers from which to purchase parts over 
the life of the part’s use within a product or organization. Second 
sourcing reduces the probability of part unavailability (and its 
associated penalties), but at the expense of qualification and 
support costs for multiple suppliers. An alternative disruption 
mitigation strategy is buffering (also referred to as hoarding). 
Buffering involves stocking enough parts in inventory to satisfy 
the forecasted part demand (for both manufacturing and 
maintenance requirements) for a fixed future time period so as to 
offset the impact of disruptions. Careful selection of the 
mitigation strategy (second sourcing, buffering, or a combination 
of the two) is key, as it can dramatically impact a part’s total cost 
of ownership. 

This paper studies the effectiveness of traditional analytical 
models compared to a simulation-based approach for the selection 
of an optimal disruption mitigation strategy. A verification case 
study was performed to check the accuracy and applicability of 
the simulation-based model. The case study results show that the 
simulation model is capable of replicating results from operations 
research models, and overcomes significant scenario restrictions 
that limit the usefulness of analytical models as decision-making 
tools. Four assumptions, in particular, severely limit the realism 

of most analytical models but do not constrain the simulation-
based model. These limiting assumptions are: 1) no fixed costs 
associated with part orders, 2) infinite-horizon, 3) perfectly 
reliable backup supplier, and 4) disruptions lasting full ordering 
periods (as opposed to fractional periods).  

 

Keywords: Total cost of ownership, buffering, part sourcing, 
supply chain, disruptions, electronic parts, life-cycle cost 

NOMENCLATURE 

λdu Probability of a disruption ending in the subsequent 
period 

λU Probability of system remaining undisrupted in the 
subsequent period 

CASYj Assembly Cost for a part in year j  
CFFj Field Use Cost for a part in year j 
CINVj Holding (Inventory) Cost without Disruptions for a part 

in year j 
CPROCj Procurement Cost for a part in year j 
CSUPj Cost to Support a Source for a part in year j  
CTCO Cumulative Total Cost of Ownership of a part  
CTCO Cumulative Total Cost of Ownership 
h Holding Cost (per part per year) 
IEj Excess Inventory (positive values of I) in year j 
K Ratio of ∆CTCO /CSUP 

M  Number of state spaces representing the minimum 
disrupted periods 

N  Number of state spaces representing the possible 
remaining disrupted periods 

PBOj Backorder Penalty Cost for a part in year j 
r Weighted Average Cost of Capital (WACC) per year 
TCO Total Cost of Ownership 
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1 INTRODUCTION 

The selection of optimal sourcing strategies for parts is a 
prevalent issue within the business management and operations 
research literature; however, the focus of existing analyses is 
typically on minimizing part procurement price. For example, 
lean manufacturing emphasizes the reduction of inventory size in 
order to cut costs. While this approach is largely effective for 
high-volume parts, it assumes that suppliers can provide parts for 
the manufacturing process without interruption [1], which is often 
not the case with electronic parts over long time periods (e.g., 10+ 
years or more).1  

Several high-profile disruption events have caused 
shockwaves within the electronics industry in recent years. For 
example, in March of 2000 a fire at a major Phillips Electronics 
plant shut down production and damaged millions of existing 
microchips. Ericsson, one of their largest customers, was faced 
with a shortage of parts that lasted for months. As a result, 
Ericsson lost an estimated $400 million in sales [2]. Similarly, a 
Japanese earthquake disrupted the supply of parts to Kelly Micro 
Systems in 1994 [2]. Another Japanese earthquake (in 2011) led 
to a tsunami that forced the shut down of several plants that 
“supply much of the world’s silicon wafers, auto parts, flash 
memory, and other components” [3].  

The simulation model presented in this paper provides a 
platform for effectively employing proactive mitigation strategies 
in order to minimize the effect of disruptions events, especially 
supplier-specific disruptions. This paper studies the applicability 
of this simulation-based approach when compared to traditional 
analytical models for the selection of an optimal disruption 
mitigation strategy. 

1.1 DISRUPTION TAXONOMY  

A supply chain disruption is a mismatch between supply and 
demand that would result in backordered parts if there were no 
mitigating factors such as buffered parts or second sources. While 
the primary effect of a disruption is the same, the source/cause of 
each event varies. Four disruption categories are discussed below: 
part-specific, supplier-specific, customer-specific, and external.2 

 

1) Part-specific: Situations related to individual parts (not 
suppliers) can impact the ability of a customer to obtain the part 
from any supplier. The most common part-specific disruptions are 
part obsolescence and counterfeit part risk. 
 

2) Supplier-specific: The two broad causes of supplier-specific 
disruptions are suppliers exiting the market and delivery delays. 
 

                                                           
1 While disruptions are a problem when lean manufacturing approaches 
are used for high-volume products, in the case of high-volume products, 
disruptions are usually relatively short in duration (e.g., hours or days), 
whereas in the case of low-volume, long field life products, disruptions 
due to allocation issues and obsolescence may have durations of months 
or even years. 
2 In the context of this paper, a customer is anyone who needs the part for 
manufacturing and/or support. 

3) Customer-specific: Poor estimation of part demand by the 
customer is the primary source of customer-specific disruption. 
Estimation issues are typically a result of unforeseen surges in 
demand and allocation issues. 
 
4) External: Events that are beyond the control of the suppliers or 
customers may directly affect the efficient production of parts and 
subsequent delivery to customers. Common causes of external 
disruption include political/legislative events, transportation 
mishaps, and “Black Swan”3 events. 
 

Manufacturers periodically negotiate supplier contracts that 
define the price, lead times, and volumes of selected part 
shipments. These contracts are deciding factors in the 
manufacturer’s overall production schedule and as such variations 
from these contractual terms can be the basis for production 
disruption, whatever the cause.  

2 LITERATURE REVIEW   

A variety of models have been developed to study the effect 
of disruption events within a supply chain. Disruption models in 
the operations research realm focus on the study of dynamic 
inventory policies, in particular the selection of optimal buffer 
stock quantities. In fact, early disruption-specific models, such as 
Song and Zipkin [5] and Parlar and Perry [6], focus exclusively 
on inventory control methods for accommodating disruption 
events. These models developed robust disruption definitions and 
mathematical models that continue to serve as the basis for more 
complex disruption models.  

Tomlin [7], Schmitt and Snyder [8], and Chen, et al. [9] 
incorporate the concept second sourcing as an additional 
disruption-management technique. However, while these models 
clearly define the effect of various disruption mitigation strategies 
on cost, supplier qualification is not considered and the secondary 
supplier is assumed to be completely reliable (essentially an 
emergency/backup supplier). In addition, Tomlin, and Schmitt 
and Snyder present infinite horizon models 4  (which do not 
consider cost of money). Although the restrictions surrounding 
these models prevent them from being useful decision-making 
tools for most real applications, a fact that their authors 
acknowledge, they can still provide valuable insight into the 
effect of disruptions and they allowed us to limit the number of 

                                                           
3  Disruption events that occur outside of reasonable or regular 
expectations, produce an extreme impact, and involve “retrospective 
predictability” [4]. Retrospective predictability indicates that the 
probability of occurrence can only be quantified after the event (or 
similar event) has taken place. Examples of black swan events impacting 
electronic parts include the 2011 Thailand flood and the 2011 Japanese 
earthquake. 
4 Infinite-horizon models assume that each ordering period takes place 
within an infinite part usage lifetime. The simplifications associated with 
this assumption (i.e., no discounting or termination/obsolescence 
activities) help to insure the formulation of convex optimization 
problems. 
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necessary disruption-based inputs for our simulation-based 
model.  

Schmitt and Singh [10] presented a simulation-based 
approach of Tomlin’s [7] model that studies the propagation of 
disruptions through infinite-horizon, multi-echelon supply chains 
and the resulting effect on inventory flow. The simulation utilized 
in this paper (as opposed to that of [10]) focuses on a single 
echelon of the electronics supply chain, more specifically the flow 
of parts from supplier(s) to the original equipment manufacturer. 
Any disruptions that occur before the parts reach the supplier(s) 
are assumed to be included in the aggregate supplier disruption 
distribution. While Schmitt and Singh’s model serves to bridge 
the gap between analytical models and simulation models, it is 
still constrained to the limiting assumptions presented in [7] 
(infinite-horizon in particular).  

None of the existing models discussed so far in this section 
focus on long life cycle, low-volume products (all are for short 
life cycle, high-volume situations); and none are specific to 
electronic parts.  The mitigation strategy selection method utilized 
in this paper starts with an existing total cost of ownership (TCO) 
model developed by Prabhakar, et al. [11]. The model developed 
in [11] demonstrated the effect of second sourcing and buffering 
on the total cost of ownership of a part and provided an efficient 
tool for calculations.  The model in [11] is extended to simulate 
combinations of contingency strategies to support optimum 
disruption management for long life cycle products.  The 
contributions of this paper include the presentation of a unique 
compilation of actual disruption data and the assessment of the 
simulation model as a real-world decision making tool (compared 
to existing analytical disruption models). 

3 PART TOTAL COST OF OWNERSHIP (TCO) WITH 
DISRUPTIONS  

The model described in [11] determines the part total cost of 
ownership in the presence of disruptions. The model was built so 
as to efficiently determine the mitigation strategy (second 
sourcing, buffering, or a combination of the two) associated with 
the lowest part total cost of ownership.  

The decision to second source a part (as opposed to single 
sourcing) is based on the tradeoff between the benefit of 
extending the effective procurement life of the part by second 
sourcing and the additional cost of qualifying and supporting the 
second source. When the qualification and support costs 
associated with maintaining multiple suppliers negate the benefits 
of second sourcing, other mitigation methods (such as buffering) 
can be considered. Part buffering involves stocking a number of 
parts in the inventory equal to the forecasted part demand of a 
fixed future time period (e.g., holding three months’ worth of part 
demand).  The forecasted demand represents the quantity needed 
for manufacturing and the quantity of spares needed to maintain 
fielded systems (or satisfy warranties). The excess inventory 
provides a buffer that decreases the impact of supply chain 
disruptions on the part total cost of ownership (TCO), but 
increases the inventory holding cost. The model developed in [11] 
takes the final output (the part TCO) from the model in [12] and 

incorporates uncertainties (part demand and supplier) and 
buffering. The final annual part TCO (Eq. 1) is estimated by 
adding the penalty cost (associated with the supplier disruptions) 
and the holding cost associated with excess inventory (due to the 
buffering policy selected and part demand uncertainty) to the 
baseline annual part TCO. Note that in years where holding cost 
(h) is charged, there are no parts on backorder (and vice versa). 
  
஼ை೔்ܥ			  ൌ ∑ ሺܥௌ௎௉ೕ ൅ ஺ௌ௒ೕܥ ൅ ௉ோை஼ೕܥ ൅ ிிೕܥ ൅ ஻ܲைೕ ൅ ாೕሻܫ݄

௜
௝ୀଵ  

  Eq.1 

For a detailed explanation of the terms in Eq. 1, see [13]. 
Supplier disruptions and part demand uncertainty incur 

penalty costs, which can significantly impact the TCO. The final 
model output is the sum of the original part TCO without penalty 
and the penalty costs. This final value is considered the part TCO. 
The simulation model described in Section 4 concurrently 
analyzes the effect of both second sourcing and buffering on the 
part TCO so that the users are able to select the most effective 
management strategy for their specific needs. 

4 SIMULATION APPROACH 

In order to model real-world disruption events, a simulation 
model was developed from the underlying formulation discussed 
in Section 3. The simulation model employs several loops to 
determine the near optimum disruption mitigation strategy, which 
is the strategy (sourcing and/or buffering) associated with the 
lowest expected cumulative total cost of ownership (CTCO) per 
part site. Figure 1 details the simulation process that is 
implemented within a Monte Carlo analysis in order to calculate 
the expected CTCO per part site for each sourcing and buffering 
strategy considered. The effective disruption mitigation strategy 
can either be determined manually (the user can perform a select 
number of Monte Carlo analyses for predetermined sourcing and 
buffering strategy combinations), or automatically within a brute 
force "optimizer" (which runs through a range of buffering and 
sourcing strategy combinations). 

 

 
Figure 1: Simulation model process and inputs used to determine the 
cumulative TCO per part site for a unique set of disruption events. 
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The model described in [11], and shown in Figure 1, 
concurrently analyzes the effect of both second sourcing and 
buffering on the part TCO so that companies are able to select the 
most effective management strategy for their specific needs. The 
model utilizes Eq. 1 to calculate the part total cost of ownership 
from the following inputs: part price, part demand (forecasted and 
actual), support costs, penalty costs, supplier (sourcing) 
information, and historical/expected disruption distributions.  
 Uncertainty is introduced into the model through the 
generation of random supplier disruption events. The disruptions 
are modeled using a three-parameter Weibull distribution (which 
was selected for generality, but other distributions could be used). 
In addition to the generation of disruption events, the simulation 
model incorporates the effect of demand uncertainty. For each 
year in the part’s life cycle, the simulation model samples a 
random value from a Gaussian distribution (with the forecasted 
part demand acting as the mean and a user-supplied value acting 
as the standard deviation) and sets that value as the actual annual 
part demand. The penalty and inventory costs associated with 
these disruptions are then calculated using the method developed 
in [11]. The final output of the model is a distribution of the likely 
cumulative TCO per part site5 (generated by implementing the 
process shown in Figure 1 into a Monte Carlo analysis) over the 
support life of the product (or family of products) for the 
mitigation strategies in question. 

Figure 2 shows example electronic part distributor delivery 
data from 2007 to 2013. This data not only serves to highlight the 
size and frequency of part orders as seen by the distributor, it also 
allowed us to isolate any discrepancies between scheduled and 

                                                           
5 A “part site” is defined as the location of a single instance of a part in a 
single instance of a product.  For example, if the product uses two 
instances of a particular part (two part sites), and 1 million instances of 
the product are manufactured, then a total of 2 million part sites for the 
particular part exist.  The reason part sites are counted (instead of just 
parts) is that each part site could be occupied by one or more parts during 
its lifetime (e.g., if the original part fails and is replaced, then two or 
more parts occupy the part site during the part site's life).  For 
consistency, all TCO calculations are presented in terms of either annual 
or cumulative cost per part site. 

actually delivery dates. The graph in Figure 2 shows how long it 
took delayed parts to reach the distributor.  

While the data in Figure 2 does not fit into a traditional 
Markovian format (a common input for analytical models), it can 
be transformed into a useful input for the disruption model where 
its effect on the total cost of ownership can then be quantified and 
studied. While the data in Figure 2 is directly connected to 
disruptions at the distributor level, an additional offset factor can 
be applied to the parameters in order to modify the data for use by 
original equipment manufacturers (essentially left-censoring the 
data to accommodate distributor mitigation activities). Ideally, 
disruption models could be applied on a part, product, or supplier 
specific basis.  

The raw delivery data (such as the data shown in Figure 2) 
was organized into frequency bins according to disruption length, 
i.e., 20 parts experienced a one-week delay, ten parts experienced 
a two-week delay, etc. This binned data can then be used to 
generate a disruption probability distribution. In our study, we 
utilized Weibull++ software to fit the data to a three parameter 
Weibull distribution. The parameters used to describe this 
distribution (shape, scale, and location) are direct inputs for the 
model. Figure 3, shows the curve that was generated using the 
delivery data and Weibull++.  

Once the parameters are input into the model, a Weibull 
probability distribution is generated. Each time a disruption 
begins (intervals between disruptions are governed by a second 
Weibull distribution) a random value is selected from this 
probability distribution and set as the length of the disruption 
event. The penalty costs associated with these events are then 
calculated for each year of the parts life (according to the methods 
discussed in [11]) and added to the base part TCO. Figure 4 
shows an example of the cumulative TCO per part site (including 
penalty) for a 13-year part life cycle and a disruption profile 
based on the delivery delay data presented in Figure 2. It should 

Figure 2: 2007-2013 Distributor delivery data for a sampling of 
integrated circuits and transformers. 

 
Figure 3: Weibull curve fit of the distributor data in Figure 2. The curve 
parameters are automatically calculated by the software and listed beside 

the output (beta: 0.834, eta: 18.726 days, gamma: -2.358 days). 



DRAFT 

  5 Copyright © 2014 by ASME 
 

be noted that the cumulative TCO per part site decreases over 
time in this example case because additional part sites are added 
to the total population each year (due to fluctuating annual part 
demand). The resulting effect of penalty costs and initial support 
costs on cumulative TCO is spread out amongst the additional 
part sites each year, reducing the per part cost.     
 The two steps described above are repeated for a series of 
Monte Carlo runs in order to produce a distribution for the 
expected part total cost of ownership. Figure 5 shows the result of 
a Monte Carlo analysis that was performed in order to account for 
the disruption uncertainty associated with the scenario shown in 
Figure 4. For the modeled scenario (based on low-volume 
electronic components), second sourcing and buffering is a more 
cost effective disruption mitigation strategy than single sourcing 
and buffering.    

5 VERIFICATION CASE STUDY 

In order to study the effectiveness of the simulation-based 
model described in Section 4, a verification case study was 
performed. Tomlin [7] presents a cost model for finding sourcing 
policies to minimize cost during disruptions. Tomlin’s analytical 
model utilizes a constrained infinite-horizon, periodic-review 
inventory system. In Tomlin’s model, all unmet demand is 
backlogged with instantaneous production and lead-time. The 
model allows for positive lead-time, assuming that lead-time is 
constant throughout the model. Tomlin’s analytical model was 
selected as the verification case due to its similarity in approach 
and its widespread acceptance in the supply-chain community. 

Tomlin presents the idea of flexible capacity as a defining 
characteristic for underlying model selection. The sub-model 
most applicable to the problem we are interested in solving has 
what Tomlin calls “Type II” flexibility. Type II flexibility implies 
that the emergency backup supplier can offer infinite and 
instantaneous capacity, essentially allowing for uninterrupted 
supply in the eyes of the consumer.  

Tomlin employs a basic Markovian disruption model that 
designates each period as either disrupted/“down” or non-
disrupted/“up”. This model specifies the probability of the 
disruption ending each period (λdu), and the total expected number 

of disrupted periods. While Tomlin utilizes an infinite cumulative 
distribution function to calculate the resulting steady state uptime, 
he didn’t provide detailed calculations. Consequently, the 
reimplementation of Tomlin’s model (see Appendix) used in this 
paper employs a truncated transition state matrix. This matrix 
converges over time and specifies a steady-state probability of the 
system being “up”. This “percent uptime” designates how many 
periods within the life of the part are not disrupted. Similarly, 
Tomlin developed equations utilizing this steady-state uptime and 
the resulting disruption probability distribution (along with a 
variety of other factors) to determine the optimal buffer quantity.  

In order to make the simulation model match Tomlin’s 
environment, several important model inputs were set to zero 
(support costs, cost of money, demand uncertainty, price-change, 
and termination costs). Removal of these effects, while necessary 
to reproduce Tomlin’s result, severely impact the realism of the 
modeled system. The steady-state probability distribution 
(explained further in the Appendix) for each scenario (scenario: 
expected downtime, minimum downtime, % uptime) was utilized 
in the simulation model in conjunction with Tomlin’s case study 
inputs and equations to calculate the average expected cost 
associated with each of his three main sourcing strategies: 
contingent rerouting (or acceptance, a subset where the rerouted 
production = 0), inventory management, and sourcing 
management.6 The calculated costs were then compared, and the 
optimal sourcing strategy (the strategy associated with the 
smallest cost) was selected. This method was employed 
repeatedly to generate points on a graph that correlated to the 
output presented by Tomlin shown in Figure 6. The cases are 
organized according to overall supplier uptime and expected 
disruption length (the combination of which characterizes the 
frequency of disruption). Scenario-specific inputs and equations 
that result in the solid lines shown in the figure are given in 

                                                           
6 While Tomlin utilizes different terms to describe disruption mitigation 
strategies, each strategy can be directly linked to second sourcing and/or 
buffering.  The three mitigation strategies he describes are: contingent 
rerouting [pure second sourcing (no buffering), rerouting production to 
the second/backup supplier in the event of disruption.], inventory 
management [pure buffering, single sourcing.], and sourcing 
management [single sourcing from a reliable supplier, no buffering.]. 

Figure 4: Cumulative part TCO (including penalty) over a 13 year period 
for a selection of sourcing strategies and a 10-week buffer. 

Figure 5: A comparison of the expected cumulative TCO for two sourcing 
strategies (a 10-week buffer assumed in both cases). 
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Tomlin [7]. With the exception of a few boundary points (which 
do not match due to numerical noise), the simulation results 
aligned closely with Tomlin’s results. This correlation serves not 
only to verify the results produced by the simulation model, but 
also to highlight the utility of the simulation model as a decision-
making tool.  

 

6 LIMITATIONS OF ANALYTICAL MODELS 

Figure 6 demonstrates that the simulation can be 
appropriately parameterized to generate the same solution as the 
analytical model of Tomlin [7].  While the model presented by 
Tomlin [7] effectively selects an optimal disruption mitigation 
strategy for a given set of inputs, it can only be applied to very 
restricted cases. The limitations that are inherent to the model are 
relatively common amongst analytical supply-chain models and 
are imposed by the models to insure that the formulation is 
convex (an optimum solution can be found). For the simulation-
based model, no such limitations are necessary.  In particular, 
there are four key restrictions that are problematic when applying 
the existing analytical models to low volume, long life cycle 
systems (where support costs and procurement lives are critical): 

1) Fixed costs of ordering are ignored. This assumption limits the 
use of the model to cases where the order (demand) time scale is 
shorter than disruption time scale (i.e., order daily, disruptions 
last weeks). In addition, any fixed costs associated with supplier 
or part qualification (which were shown in [13] to have a direct 
effect on the total cost of ownership) cannot be considered. 
Tomlin notes that adding fixed/support costs and varying lead 
times might require simulation-based optimization.  

2) Infinite-horizon model. This restriction, which works for an 
idealized high-volume, short life-cycle scenario, doesn’t 
incorporate cost of money or price change over time, which are 
necessary components of long life-cycle products. 

3) Disruptions last full ordering periods (i.e., disruptions are 

delivered in full or not at all). Tomlin, in particular, employs an 
idealized Markovian disruption model (discussed in Section 5). 

4) Secondary (a.k.a., emergency/backup) supplier is completely 
reliable. This assumption indicates that second sourcing 
consistently allows for an uninterrupted supply of parts (as long 
as all the suppliers have enough notice and capacity). This 
restriction ignores overlapped supplier downtime (independent 
probability distributions), which is a more realistic scenario 
(especially when it comes to industry wide shortages). 

7 RELAXING ANALYTICAL MODEL ASSUMPTIONS 

 Section 5 demonstrated that the simulation model described 
in this paper is capable of reproducing the results obtained by 
Tomlin [7]. However, the simulation model does not have the 
same core restrictions. A simulation-based approach, while not 
capable of guaranteeing a formal optimum, is able to produce a 
practical near-optimum value that incorporates both a greater 
amount of uncertainty and more complex parameters. This 
effective optimum can be calculated for realistic supply systems, 
and therefore can be more readily utilized as a decision-making 
tool.  
 In order to determine the impact of analytical model 
assumptions, several case studies were performed.  

7.1 FRACTIONAL DISRUPTION PERIODS  

One of the underlying assumptions within the verification 
case (Section 5) is the Markovian format of the disruption model. 
In Tomlin’s [7] work, ordering periods (defined as a full rotation 
of orders and fulfillment) are either up or down (non-disrupted) as 
seen by the user. However, this generalized model, while 
appropriate for scenarios where disruptions always last at least 
several ordering periods, does not accommodate small-scale 
disruption events (such as delivery delays) or disruptions that 
start/stop within an ordering period (resulting in the delivery of a 
fractional order).  

The simulation model presented in this paper employs user-
controlled disruption distributions (non-Markovian), which 
allows fractional orders to be delivered due to downtime in the 
previous order cycle. In order to test the validity of Tomlin’s 
model in these types of disruption events, a modified version of 
the verification case study was performed. The following model 
assumptions are important to note: 

1) Disruptions in period i affect the order size delivered in period 
i+1. For example, if the disruption lasts 25% of year i [three 
months.], then 25% of year i+1’s order will not be delivered on 
time. 

2) Infinite-horizon assumptions are still in place (no cost of 
money or fixed costs are considered) 

3) All of the inputs used in Section 5 were preserved for this case 
study, with the exception of the expected disruption lengths.  

4) When implementing fractional disruption periods into 
Tomlin’s formulas for identifying icrit [7] and the optimal 
inventory level, the number of modeled periods was rounded up 

Figure 6: Optimal sourcing strategies for select disruption scenarios. The 
overlaid points show the mitigation strategy associated with simulation test 

points: Circles represent Sourcing Management, diamonds represent 
Inventory Management, squares represent Contingent Rerouting (CR), and 
the triangles represent equal cost for both Sourcing Management (SM) and 

Inventory Management (IM). 
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to the nearest integer. The calculated values of icrit are therefore a 
conservative estimate. 

As seen in Figure 7, the inclusion of fractional disruption 
periods has minimal impact on the optimal mitigation strategy. 
The simulated points still follow the underlying pattern defined 
by Tomlin.  

7.2 FINITE HORIZON (COST OF MONEY) 

In order to study the impact of the infinite-horizon 
assumption within the verification case, cost of money (r = 2%) 
was incorporated into the case study outlined in Section 7.1.  

Figure 8 shows that the optimal buffering strategy no longer 
aligns with the results from Tomlin’s equations. Instead, the 
inclusion of cost of money shifts the optimal buffering strategies 
so that fewer buffered parts are needed in the optimal strategy. In 
addition, the optimal mitigation strategies no longer match up 
with Tomlin’s overlaid infinite-horizon results (also shown in 
Figure 8). Instead, second sourcing (or a combination of second 

sourcing and buffering) becomes a much more prevalent option.  
Note, the 2% cost of money assumed in this example is 
significantly smaller than the WACC (weighted average cost of 
capital) of most electronic systems manufacturers, so the 
discrepancy is actually much greater than that shown in Figure 8.  
Tomlin utilizes very long life cycles (100-1300 periods) and 
minimal recurring costs, so a WACC of 2%/period was chosen 
(as opposed to a more common value of 10-12%/year) in order to 
maintain reasonable differences between the cumulative total cost 
of ownership (CTCO) per part site values. For example, in one of 
the most extreme cases (1250 modeled years and 98% supplier 
uptime) the CTCO per part site for second sourcing was found to 
be $0.040799998 and the CTCO per part site for single sourcing 
from the unreliable supplier was found to be $0.04080001 (a 
discrepancy of 10-8). If the WACC was increased to a more 
standard rate, the CTCO per part site values would decrease even 
further (diverging even more from Tomlin’s results).   

 

7.3 FIXED COSTS 

Prabhakar et al. [12] noted the significant impact of fixed 
costs (support costs in particular) on the part total cost of 
ownership of low volume electronic parts and systems. Low 
volume, long life cycle products cannot spread the effect of fixed 
costs over a large part population, so elevated support costs 
directly impact the TCO per part site. The majority of analytical 
disruption models, however, focus on long run average costs due 
to the minimal impact of initial support costs on high volume 
consumer electronics. In order to study the effect of the fixed 
costs omission within the validation case, a $1000 product 
specific approval cost was added to the case study outlined in 
Section 7.1. Similar to the reasoning behind the use of a small 
WACC in Section 7.2, a relatively small product specific 
approval cost was employed in this case study so as not to unduly 
offset the small CTCO per part site values accumulated in 
Tomlin’s original case study. Product specific approval costs are a 
popular form of support costs that are incurred each year a 
product is introduced and charged for each contracted supplier.  

As shown in Figure 9, the addition of fixed costs does not 

Figure 7: Optimal sourcing strategies for select disruption scenarios. The 
overlaid dots show the mitigation strategy associated with fractional 

disruption test points: Circles represent Sourcing Management, diamonds 
represent Inventory Management, and squares represent Contingent 

Rerouting.  

Figure 9: Optimal sourcing strategies for select disruption scenarios. The 
overlaid points show the mitigation strategy associated with fixed cost test 
points: Circles represent Sourcing Management and diamonds represent 

Inventory Management.  
 

Figure 8: Optimal sourcing strategies for select disruption scenarios. The 
overlaid dots show the mitigation strategy associated with cost of money test 

points: Circles represent Sourcing Management, squares represent pure 
Contingent Rerouting, and X’s represent a combination of both Contingent 

Rerouting and Inventory Management. 
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have a marked effect on Tomlin’s original case study results for 
disruption scenarios with relatively small-moderate values of 
overall percent uptime. However, for scenarios with a higher 
percent uptime (less accumulated disruptions), the effective 
optimal disruption strategy switches from contingent rerouting to 
inventory management. This change in results is due to the fact 
that support costs are duplicated (K factor of 1) when the 
manufacturer contracts two suppliers. The combination of 
elevated support costs and a premium emergency part price 
($2.63 per part from the backup supplier when acting in an 
secondary/emergency capacity) causes contingent rerouting to be 
less cost effective than inventory management.  

 

7.4  UNRELIABLE BACKUP SUPPLIER 

The case study performed in this section assesses the effect 
of maintaining a completely reliable backup supplier. This 
assumption gives manufacturers the option to pay a premium part 
price in order to ensure a consistently uninterrupted supply of 
parts. In realistic supply chains, however, supplier disruptions can 
never be completely prevented at any price and depending on the 
nature of the disruption, a backup supplier may be affected the 
same as the primary supplier. 

An additional disruption profile was implemented in the 
simulation model in order to generate disruption events for the 
backup supplier. The parameters used to describe the disruption 
profile (Weibull distributions) are shown in Table 1. The 
parameters were selected to reflect significant disruption events 
(expected length: 1.6 ordering periods) that occur on average 
every 5.5 years. All of the other inputs used for this case study are 
discussed in Section 7.1 and detailed in the Appendix. Once 
again, the simulation model’s internal optimization capabilities 
were utilized to identify the optimal inventory level instead of 
Tomlin’s [7] formulas.  

 
Table 1: Weibull parameters used to generate disruption events for the 

backup supplier (Y).  

Backup Supplier (Y) 

 
gamma 
(years) 

beta 
eta 

(years) 
Interval 5 1 0.5 
Length 1 1 0.6 

 
The unreliability of the backup supplier, while less 

significant than the unreliability of the primary supplier (i.e., less 
accumulated disruption) is further exacerbated in this case study 
by the higher backup part price. As detailed in the Appendix, the 
primary supplier has a set price of $1.00 and the backup supplier 
has a set price of $1.05 (unless acting in emergency/secondary 
backup capacity, in which case they charge $2.63 per part). In 
Tomlin’s original case study, the accumulated penalty costs 
associated with the unreliable primary supplier outweighed the 
elevated price of the backup supplier because a continuous stream 
of parts was guaranteed when single sourcing from the backup 
supplier. However, as shown in Figure 10, the addition of 
disruption events at the backup supplier increases the total cost of 
ownership and makes single sourcing from the less expensive 

unreliable supplier generally more cost effective. In addition, in 
regions where single sourcing from the backup supplier is more 
cost effective (relatively low values for unreliable supplier 
percent uptime and high values for the expected number of 
disrupted ordering periods) a small buffer is necessary in order to 
offset disruption events and achieve the lowest expected 
cumulative part TCO.  
 

8 DISCUSSION AND CONCLUSIONS 

This paper demonstrates the effectiveness of a simulation-
based approach when compared to traditional analytical models 
for the selection of an optimal disruption mitigation strategy. 
While Tomlin’s model [7] and other infinite-horizon disruption 
mitigation models are generally effective for high-volume, short-
ordering period part supply chains, several underlying 
assumptions prevent them from being applicable to low-volume, 
long life-cycle products and systems. Four assumptions, in 
particular, were found to limit the realism of most analytical 
models but do not constrain a simulation-based model. These 
limiting assumptions are: 1) no fixed costs associated with part 
orders, 2) infinite-horizon, 3) perfectly reliable backup supplier, 
and 4) disruptions lasting full ordering periods (as opposed to 
fractional periods). The final limiting assumption (disruptions 
lasting full ordering periods) was modeled in Section 7.1 and 
found to have minimal effect on the optimal disruption mitigation 
strategy. The remaining assumptions, however, were found to 
have a direct and significant impact on the optimal disruption 
mitigation strategy and therefore cannot be ignored in realistic 
case studies.  By replicating the results of a widely accepted 
analytical model [7], the simulation model has proven not only its 
effectiveness as decision-making tool, but also its versatility. 

The case studies presented in Section 7 show the effect of 
slight variations to Tomlin’s [7] assumptions, however they do 
not capture the true potential of the simulator. As shown in the 
previous paper and Section 4, the simulator is capable of 
modeling highly specific and realistic cases. In particular, 
obsolescence-type disruptions and fixed support costs have been 

Figure 10: Optimal sourcing strategies for select disruption scenarios. The 
overlaid points show the mitigation strategy associated with unreliable 

backup supplier test points: Circles represent Sourcing Management and 
+’s represent a combination of both Sourcing Management and Inventory 

Management. 
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shown to greatly affect the total cost of ownership (and therefore 
the optimal mitigation strategy). The most effective disruption 
management plan may not be a single mitigating strategy. Instead, 
a combination of both second sourcing and buffering has been 
shown to decrease the mean cumulative TCO. 
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APPENDIX 

In Tomlin [7], steady-state uptime probabilities (which define 
the Markovian model) are calculated from cumulative distribution 
functions that deal with an infinite number of states. In order to 
efficiently reproduce Tomlin’s work, a finite transition state 
matrix was built in Matlab. This matrix was used to quickly find 
the optimal buffer quantity associated with a set number of 
disrupted periods (percent uptime).  

 
Components of transition rate matrix (size of matrix: 1+M+N): 
 1: State space 0 (no disruption occurring) 
 M: State spaces representing the minimum number of 

disruption periods 
 N: State spaces representing the possible remaining disrupted 

periods (in excess of the minimum) with which there is a 
constant probability of the disruption ending. Ideally 
N=infinity, but steady state probabilities converge when N is a 
finite large number 

Example: M=4, N=3 
State 0 1 2 3 4 5 6 7 

0 λU 1- λU 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 0 
2 0 0 0 1 0 0 0 0 
3 0 0 0 0 1 0 0 0 
4 λdu 0 0 0 0 1-λdu 0 0 
5 λdu 0 0 0 0 0 1-λdu 0 
6 λdu 0 0 0 0 0 0 1-λdu 

7* 1 0 0 0 0 0 0 0 
 

Because the transition state matrix is truncated (after 1+M+N 
periods) in order to produce a practical model, the final possible 
state has a transition rate of 1 (returning the system to state 0, no 
disruptions). 

In order to isolate an effective value for N (that allows the 
system to converge to steady-state), several case studies were 
performed. In Figure 11 for a steady-state probability of 90.07% 
and a minimum number of disrupted periods (M) equal to 20, the 
number of additional state spaces modeled (N) was varied from 0 
to 300.  

 



DRAFT 

  10 Copyright © 2014 by ASME 
 

 
The system converged to the expected steady-state value 

within 100 steps. Similarly, for a steady state probability of 
80.01% and a minimum number of disrupted periods (M) equal to 
40, the number of additional state spaces modeled (N) was varied 
from 0 to 300 as shown in Figure 12. 

 

 
Once again, the system converged to the expected steady-

state value within 100 steps. Several more state spaces were 
modeled, and the expected steady-state value was consistently 
achieved within 100 steps. For this reason, a buffer value of 200 
steps was set as N for all of the case studies discussed in this 
paper. 

The remaining inputs utilized within the simulation model for 
the Tomlin-specific case studies in this paper are shown in Tables 
2-4.  
 
Table 2: General inputs used to re-implement Tomlin’s methodology within 

the developed simulation model, see [13] for explanation of variables. 

General Inputs 
Ratio, K 1.00 

Cost of Money, r 0.00%/year 

Base Year for Money 1 

LTB overbuy 0.00% 

Inventory Cost, h (per part) $0.0015 

Price change (per year) 0.00% 

Supplier X Price (per part) $1.00 

Supplier Y Backup Price (per part) $2.625 

Supplier Y Base Price (per part) $1.05 

Product Designs 1 

Annual Forecasted Part Demand 10 

Demand Uncertainty 0 
Backorder Penalty, PBO (per part per 
year) 

$0.15 

Scrap Cost (per part) $0 
 

Table 3: Support costs modeled within the reimplementation Tomlin’s 
methodology, see [13] for explanation of variables. 

Support Costs ($) 
Product-Specific Approval 0 

Initial Approval 0 

Annual Part Data Management 0 

Annual Production Support 0 

Annual Purchasing 0 

Obsolescence Case Resolution 0 

PSL Qualification 0 
 

Table 4: Supplier specific Weibull parameters used to generate disruption 
events that emulate Tomlin’s methodology within the developed simulation 

model. 

  Supplier X Supplier Y 

  
gamma 
(years) 

beta 
eta 

(years) 
gamma 
(years) 

beta 
eta 

(years) 

Interval 
(years) 

100 5 1 3000 0 0 

Length 
(years) 

0 1 10 0 0 0 

Analysis 
Run-In 
Time 

(years) 

0 0 0       

 
 

 

Figure 11: Number of state spaces required to converge to 90.07% steady 
state probability 

Figure 12: Number of state spaces required to converge to 80.01% steady 
state probability 


