
1 INTRODUCTION 
 
Alternative energy sources have increasingly gained 
the interest for governments, research institutes, 
academia, and industry in order to advance the 
penetration of sustainable energy to reduce the 
dependency on and environmental hazards posed by 
traditional energy sources such as coal and oil. Wind 
energy stands at the forefront of these energy 
sources; the United States Department of Energy 
(DoE) and the National Renewable Energy Lab 
(NREL) for instance, under the ‘20% Wind Energy 
by 2030’ plan, announced that the US could feasibly 
increase the wind energy’s contribution to 20% of 
the total electricity consumption in the United States 
by 2030 (U.S. DoE, 2008).  

Wind energy sources face numerous challenges 
that obstruct them from competing with traditional 
sources, and capturing a significant market share. 
Wind energy has not been proven out over a 
sufficient amount of time to assess their long term 
viability. Furthermore, the reliability of wind 
turbines turned out to be different from what was 
originally predicted. Another major challenge with 
wind energy is intermittency, i.e., their energy 
generation is dependent on intermittent sources, as 
can be seen in Figure 1, which shows the wind 
capacity factor for Kansas wind farms from August 
2007 to June 2008.  

 

The figure shows the monthly capacity factor. 
Capacity factor is the ratio of the produced energy to 
the theoretical maximum capacity that can be 
produced. 

The availability of wind turbines (and wind farms) 
will determine the energy impact they are able to 
have. In other words, if the system is unreliable and 
always unavailable because it is subjected to 
maintenance and repairs, then the potential profit 
from the source will drop drastically because the 
system is not able to produce the required energy. 
This can be even worse if the costs and energy 
associated with the maintenance of the system 
outweigh the profit obtained if the system is in 
operation.  

In this paper, we present the major challenges of 
ensuring high availability of wind turbines. 
Prognostics and health management (PHM) is then 
proposed as a discipline of technologies and 
methods to ensure high availability. We present a 
new sensor system that can be used to ensure high 
availability of turbines.  
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ABSTRACT: Modern wind turbines are relatively “immature” in the sense that they have not been fielded for 
a sufficient amount of time to assess their long-term viability. Availability, the ability of a system to function 
when it is required, is a major concern for alternative energy systems. Profits and environmental benefits will 
be lost if the costs and energy required to maintain a system outweigh the benefits obtained. Prognostics and 
system health management (PHM) methods can have a significant impact on the wind energy community. 
PHM enables the manufacturers and operators of complex systems to move from traditional time- or cycle-
based maintenance to condition-based maintenance, which can significantly improve availability. This paper 
discusses the challenges in guaranteeing the high availability of wind turbines, and the use of PHM as a 
methodology to guarantee the high availability. A new sensor system for the health monitoring of turbine 
blades is proposed and a return on investment analysis for its use is presented.   



 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
The work presented in this paper is structured as 

the following: Section 2 discusses the challenges for 
ensuring the availability of wind turbines. Section 3 
introduces prognostics and health management as a 
method to ensure high availability of turbines.  
Section 4 discusses the state of health monitoring of 
wind turbines. Section 5 introduces a sensor system 
for the health management of blades and gearboxes, 
and includes a return on investment analysis, and 
Section 6 concludes the paper and provides 
directions for future research. 

2 CHALLENGES IN AVAILABILITY OF WIND 
TURBINES 

 
The Wind Energy Operations & Maintenance 

Report was recently published (Asmus and Seitzler, 
2010) and included a discussion highlighting the 
challenges with wind energy systems.  Some of the 
most notable conclusions are that the operation and 
maintenance (O&M) costs for wind power are 
double or triple the figures originally projected, they 
are particularly high in the United States. Another 
interesting fact is that many gearboxes, designed for 
a 20-year life, are failing after 6 to 8 years of 
operation.  

These challenges indicate that reliability, 
maintainability, and availability stand among the 
key challenges to the economic viability of wind 
turbines and their ability to compete with traditional 
energy sources. This section summarizes these 
challenges.  
 

2.1 Reliability  

Ideally, the turbines would behave in the field just as 
they perform under testing of stated conditions. 
However, most fielded turbines are relatively new 
and have not been subject to enough testing and 
qualification. This resulted in a dramatic difference 

in the actual life of the system and the one stated on 
the specification sheet. 

Simulating the actual conditions where the 
system will be implemented is challenging and may 
not be properly accounted for in the testing phase for 
wind turbines. However, reproducing the actual 
conditions may be challenging - reproducing the 
waves and the harsh weather conditions and the 
interaction with other environmental factors may be 
impossible to account for in a lab testing 
environment. Reliability testing similar to 
aeronautics can be used. The two fields share 
multiple criteria: stringent environment conditions 
and challenges reproducing these conditions. Highly 
accelerated life testing (HALT) and highly 
accelerated stress screening (HASS) are examples of 
environmental tests used in other disciplines.  

Figure 2 adopts the data from (Arabian-

Hoseynabadi et al. (2010)) to show the reliability of 

wind turbines showing the failure rate of different 

sub-assemblies. The plot shows that multiple 

subassemblies have a significant yearly rate of 

failure. 

 
 

 

 

Figure 1. Capacity factor in a Kansas wind farm August 2007 to June 2008 

(http://kcc.ks.gov/energy/chart.htm) 

Figure 2. Reliability of wind turbines  
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2.2 Maintainability  

The maintainability of wind turbines emerged as a 
major challenge for their economic viability. For an 
offshore wind turbine for instance, the operation and 
maintenance accounts for the second largest share of 
the turbine’s life-cycle cost as seen in Figure 3 
(Musial and Ram, 2010). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3 shows the projected cost for an offshore 
wind turbine in the United States. With the 
operations maintenance cost being as high as 20% of 
the total cost, if the turbine is not maintained as it is 
originally intended to be then the cost is going to 
rise even more and pose more challenges on the 
economic viability.  

Furthermore, wind turbines require special 
workforce that is trained to maintain the particular 
system, and require non-traditional resources such as 
vessels and cranes.  

Another major concern in the renewable energy 
sources is the maintenance paradigm that is usually 
chosen. If the system is run to failure and 
unscheduled maintenance occurs, it has a big effect 
on the cost of maintenance. Typically one would 
want to have predictive maintenance in order to 
minimize cost. 

2.3 Availability  

Availability, the ability of a system to function when 
it is required (Jazouli and Sandborn, 2010), is a 
function of its reliability and how efficiently it can 
be maintained. Hence the availability of turbines 
will actually determine the energy impact. In other 
words, if the system is unreliable and always 
unavailable because it is subject to maintenance and 
repairs, then the potential profit from the source will 
drop drastically because the system is not able to 
produce the required energy.  

Specifications for wind turbines for instance state 
an availability of 98%, which accounts for few days 
of maintenance during the year and it is assumed 

that the turbine will be operating during the rest of 
the year. Ideally we would want the renewable 
energy sources to produce energy whenever it can. 
This is unrealistic however, and there’s a need to 
take into consideration the challenges and 
limitations as to when and how to perform 
maintenance. 

Another aspect of availability is the need of 
nontraditional resources for maintenance. Offshore 
wind farms require vessels with cranes that can 
sometime go out only a couple times a year. If one 
turbine broke right after a maintenance action has 
been performed on it, then it will not be available 
until next time the vessel is out for maintenance. 

Kuhn (2007) studied the failure rates of 235 small 
wind turbines and assessed the annual frequency rate 
and the corresponding downtime for different 
subassemblies. The results can be seen in figure 4. 
Similar analysis for large scale wind turbines were 
analyzed by (Wilkinson et al., 2009) and the results 
are seen in figure 5. The figure shows the downtime 
in hours for the turbine corresponding to different 
subassemblies. The failure rates for the same 
subassemblies are shown in Figure 2 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

3 PROGNOSTICS AND HEALTH 
MANAGEMENT  

 
Prognostics and health management (PHM) is a 
discipline consisting of technologies and methods to 

Figure 3. Projected life cycle cost breakdown 

for offshore wind turbines 

Figure 4. Downtime for wind turbines (Kühn, 

2007) 

Figure 5. Downtime per subassembly (Wilkinson 

et al. (2009)) 



assess the reliability of a product in its actual life 
cycle conditions to determine the advent of failure 
and mitigate system risk (Pecht, 2008 and Cheng et 
al., 2010). PHM is an enabling technology that 
allows the industry to transition from traditional 
maintenance to condition-based maintenance. It is 
also an enabler of performance-based contracts. 

The main approaches for PHM are: 1) model-
based approaches, which utilize knowledge of a 
product’s life cycle loading conditions, geometry, 
material properties, and failure mechanisms to 
estimate its remaining useful life; 2) data-driven 
approaches, which look at current and historical data 
to estimate the remaining useful life of a product 
using machine learning and statistical methods; and 
3) fusion approaches which incorporate the benefits 
from the first two methods. 

In a PHM cycle, the health of the system is 
monitored continuously with sensor systems. Data is 
collected either in real-time (continuous 
monitoring), or stored and used off-board when 
analysis is not in the system. The first step in the 
analysis consists of preprocessing the collected data. 
When data is ready, it is used within a diagnostic 
algorithm; anomalies are reported when there is a 
change from a healthy state, then the root-cause of 
the anomaly is identified. A prognostic algorithm is 
then used to predict the remaining useful life (RUL) 
of the component/system. The RUL is used by the 
decision-maker to manage the health of the system 
and take the appropriate action prior to the failure. 

Systems incorporate PHM for a number of 
reasons that include: failure avoidance, life cycle 
cost reduction, warranty verification, future system 
design improvements, and availability improvement. 
Benefits of PHM extend to the whole life cycle of 
the system to include the following stages: design 
and development, production and construction, 
operations, logistic support and maintenance, and 
phase-out and disposal. 

 

3.1 Benefits for the system design 

Large scale wind turbines are relatively immature 
and may have not been tested and qualified well 
enough, PHM can play a pivotal role in their success 
by addressing this shortcoming. PHM can be used to 
optimize the design and improve qualification of the 
system. PHM enables the collection of information 
throughout the life-cycle of the turbine. The 
information collected on the loads and environment 
that the turbines see during its life-cycle can be used 
in future testing to make sure that new designs are 
seeing the same profiles.  

3.2 Benefits during the operation of the system 

PHM can predict when a failure will happen which 
gives lead time to entities involved in the operation, 

management, and maintenance of the system to take 
actions and ensure availability. This information can 
avoid catastrophic failure of systems. A knowledge 
about the end of life of the gearbox of a wind turbine 
can avoid the catastrophic damage of the gearbox 
which can cost up to 15% of the total cost of the 
turbine.   

The information from PHM can be used in the 
control of the wind turbine. If a turbine is degrading, 
then the decision-maker can reduce the load on it by 
controlling the angle of the blades and make it run at 
a lower speed. This will ensure that the turbine is 
still available and operating until the next time 
maintenance resources are available.   

PHM can potentially play a critical role in 
defining and enhancing warranty services for wind 
turbines and farms.      

3.3 Logistics and maintenance optimization 

PHM allows the move from traditional maintenance 
(scheduled or unscheduled) to the more cost 
effective condition-based maintenance (CBM). 
CBM can provide benefits including minimizing 
scheduled and unscheduled maintenance, extending 
maintenance cycles, improving maintenance 
effectiveness, and reducing maintenance costs.  

The information from PHM can be further used to 
optimize logistic supply chain (Khalak and Tierno, 
2006) which is critical for wind turbines. For 
example, the PHM information can be used to order 
a blade and have it shipped to the wind farm to 
minimize logistics leadtime in the case of a failing 
blade.  

4 HEALTH MONITORING IN WIND 
TURBINES 

PHM has been performed on wind turbines for: 
gearbox, bearings, oil, blades, electronics, and 
overall performance.  

Gearboxes are the subassemblies with the most 
advanced PHM. A common approach is to monitor 
gearbox vibration using accelerometers and use 
vibration analysis approaches to detect faults (Huang 
et al., 2008). 

Oil analysis is performed to safeguard the oil 
quality and the components involved. It is mostly 
executed off line, by taking samples. The oil is 
analyzed for wear debris. In wear debris analysis, 
the quantity, size distribution, morphology and color 
of wear debris is determined, which can provide 
information on the wear modes, wear sources, and 
wear phases present in the machine (Ebersbach, et 
al., 2006).  

Blade failures are due to: core damage, 
disbonding, cracks, delamination, broken fibers. The 
analysis of the blades is typically done by examining 



the physical conditions of materials, which are 
methods done offline to monitor crack growth.  

Power electronics and electronic controls account 
for a small chunk of the cost but have a big effect on 
downtime as can be seen from figures 4 and 5. There 
have been several diagnostic approaches developed 
for power electronic devices especially IGBTs but 
these are done to detect faulty components rather 
than detection before they occur. Such methods 
include neural networks, wavelet analysis, Bond 
graph methods.  

A comprehensive review of condition monitoring 
of wind turbines can be seen in Hameed et al. (2009) 

5 LOCAL HEALTH MONITORING SOLUTION 

This section presents a solution for real-time, on-board as 

well as low power and local solution for health 

monitoring of wind turbines.  

5.1 NEEDS 

The main failure modes and sites of wind turbines 
have been reviewed (Arabian et al. 2010) and  (Yang 
et al., 2008) and the mechanical failures either on 
blades or gearboxes appeared in the top10 failure 
modes. Further, according to literature (Yang et al., 
2009) and (Djurovic et al., 2009), in order to be able 
to develop health monitoring diagnosis (and the 
associated computation), the following sensors are 
necessary: temperature, pressure, vibration, 
acoustics, and strain. Moreover, voltage, current and 
signal (digital as well as analog) sensors are a useful 
complement (Yang et al., 2008 b). More detailed 
requested values are given hereby for vibration and 
strain sensors. 

Frequencies of interest depend on the defects to 
be characterized (Yang et al., 2009) and (Djurovic et 
al., 2009), 
• 100-550 Hz DFIG (doubly-fed induction generators) 

• 100±1 Hz Generator stator and grid imbalance faults 

• 50±1 Hz Faults occurring in the whole wind turbine 

drive train 

• 25~32.5 Hz Mechanical faults caused by or 

unbalanced blades and shaft 

• 5~30 Hz Electrical faults caused by a generator rotor 

winding fault or rotor eccentricity 

Strain gauges should be able to measure up to 
4 500 µε (or 0.45 %) with a resolution of 1 µε. The 
storage capacity should be greater than 2 MB. 

CALCE presented a sensor system for 
prognostics and health management Cheng et al. 
(2010). The sensors are used to monitor 
environmental, operational, and performance-related 
characteristics. Pecht (2008) also presents a number 
of guidelines for sensor selection for PHM 
application. A list of sensors with their respective 

properties is presented. Guidelines for sensor 
selection are also discussed.  

5.2 TRIADE  

TRIADE is a technology that has been developed for 
aeronautic applications. The architecture 
encompasses temperature, pressure, vibration, strain 
and acoustic sensors that can be used to monitor the 
health of a turbine (see table 1). Figure 6 describes 
the organization with remote as well as on-board 
sensors and figure 7 shows the realization of the 
actual solution. The small dimension of this solution 
is a definite advantage to implement it in places 
where space and weight are at a premium. 
 

Table 1. Description of the sensors of TRIADE 

Sensors Reference Numbers 
Temperature  SHT21 

SOI sensor 

1 

1 

Pressure MS5534C 1 

Vibrations 832M1 1 (3D) 

Strain gauge 1-LY4x-6/1000 

SOI sensors 

6 

1 

Acoustic AE transducers 3 channels of 8 

sensors each 

 

One main advantage of the TRIADE solution is 
that it has been designed to be implemented on and 
within composite structures on-board helicopters in 
moving parts. Mechanical simulations have been 
made to ensure that the architecture is strong enough 
to withstand these harsh conditions. Environmental 
and functional tests will be led as well. Hence, an 
implementation directly on a blade is possible. 

 

 
Figure 6. Architecture of the TRIADE solution 

 

 
Figure 7. Photograph of the TRIADE solution 

 



The main characteristics of the sensors fulfill the 
needs for wind turbine health monitoring as shown 
in table 2. 
 

Table 2. Characteristics of the sensors 

sensors Range   
temperature -40/+125°C < 0.04°C/yr drift 
pressure 10/1100 mbar -1 mbar/yr drift 
vibrations 2-1000 Hz Max sampling rate 

12 kHz 
strain ± 5 000 µε Self-compensated 

acoustic Impact detection  
 

The TRIADE solution is designed to be 
autonomous. The on-board microcontroller that has 
been selected for the Smart Tag belongs to the 
MSP430 family from Texas Instruments. It is 
specifically designed for ultra-low-power 
applications, having flexible clocking system, 
multiple low-power modes, instant wake-up and 
intelligent autonomous peripherals, features that 
enable true ultra-low-power optimization and 
dramatically extend battery life.  

The data are retrieved through an RFID link. The 
passive RFID technology (@13.56 MHz) has been 
chosen for the RF communication link. Thus, the 
TRIADE Smart Tag acts like a passive RFID tag 
during communications. The tags of passive RFID 
systems do not need power supply and this is why 
they are called passive. Passive tags (the TRIADE 
Smart Tag included) are powered (during the 
communication phase) from the electromagnetic 
field generated by the RFID reader antenna. Thus, 
the RF link of the TRIADE platform consumes no 
power from the battery at all. 

The RF energy harvester is used to scavenge 
energy from radio waves, convert the waves into DC 
power and replenish the battery. The operation of 
the harvester is accomplished by receiving radio 
waves with an antenna, converting the signal and 
conditioning the output power. 

All these characteristics mean that it may be 
implemented in places which are not readily 
accessible, e.g. to monitor gearboxes. Data could be 
transferred on a regular basis, should an RF 
transceiver be installed in the wind turbine. 

As a summary, TRIADE is able to send relevant 
data on blades and gearboxes in all relevant field of 
sensing. 

5.3 Diagnostics and Prognostics  

CALCE has developed other sensor solutions for 
remote monitoring and PHM. Examples include a 
sensor tag deployed on autonomous systems.  

After data is collected, it is critical to use the 
information with diagnostic and prognostic 
algorithms in order to make strategic decisions and 

harvest the benefits of PHM. For this purpose 
CALCE has developed a set of software tools and 
algorithms that help in data pre-processing, data 
mining, anomaly detection, diagnostics, and 
prognostics. Examples of these can be found in 
Cheng et al. (2010) Sotiris et al. (2010) and Kumar 
et al. (2010). 

5.4 Return on Investment  

Return on Investment (ROI) is a key means of 

gauging the economic merits of adopting PHM. The 

determination of the ROI allows managers to 

include quantitative, readily interpretable results in 

their decision-making. ROI analysis may be used to 

select between different PHM approaches, to 

optimize the use of a particular PHM approach, or to 

determine whether to adopt PHM versus more 

traditional maintenance approaches (Feldman et al., 

2009). ROI is typically defined by:  
 

ROI =
����	
������������

���������
  (1) 

 
ROI calculations are application specific since the 

cost avoidance and investment can be different from 
one application to another. The data used in this 
example to represent turbines in an offshore wind 
farm was adopted from Andrawus et al. (2006) and 
Arabian-Hoseynabadi et al. (2010), Table 3. The 
ROI analysis was performed using CALCE’s PHM 
ROI tool, Sandborn and Wilkinson (2007).  

To enable the calculation of ROI, the analysis 
first determines the optimal prognostic distance 
when using a data-driven PHM approach (see Figure 
8).  Due to uncertainties in the RUL predicted by the 
PHM approach, waiting for the whole predicted 
RUL before taking maintenance action will result in 
significant unscheduled failures.   

Table 3- Inputs to ROI model 
Inputs Values 

Failure rate per year 0.308 

Scale parameter  9,386 

PHM acquisition cost (Euros) 300 

Operational time per blade per year (hours) 2,891 

Support life (years) 20 

PHM annual infrastructure costs (Euros) per blade 1,282 

PHM recurring costs per blade (Euros) 1,820 

Blade base cost (Euros) 37,736 

PHM non-recurring costs per fleet (Euros) 4,520 

Number of blades per fleet 78 

PHM non-recurring costs per blade (Euros) 57.95 

Time to replace for scheduled maintenance (calendar hours) 168 

Fraction of maintenance events requiring replacement (%) 100 

Materials/Logistics cost  per maintenance (replacement) event 1,606 

Labor cost per maintenance (replacement) event 2,753 

Total materials and labor  4,359 

Value added tax (%) 0.175 

Discount rate / cost of money (%) 0.082 

Cost per hour out of service (Euros) 11 

Time to replace for scheduled maintenance (calendar days) 7 

Time to replace for unscheduled maintenance (calendar hours) (Variable) 

Number of turbines       26 

Number of blades per turbine              3 



 
Prognostic distance is the amount of time before 

the forecasted failure (end of the RUL) that 
maintenance action should be taken.  Small 
prognostics distances cause PHM to miss failures, 
while large distances are overly conservative and 
throw away lots of life. For the combination of PHM 
approach, implementation costs, reliability 
information, and operational profile assumed in this 
example, a prognostic distance of 470 hours yielded 
the minimum life cycle cost over the support life of 
the turbine. Similar analysis was conducted to 
determine the optimum fixed-interval scheduled 
maintenance interval. A fixed maintenance interval 
of 8,000 hours yielded the minimum life cycle cost 
over the support life. Again, small fixed 
maintenance intervals miss failures, while large 
intervals are overly conservative. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 represents the accumulation of the life 

cycle cost per socket for both data-driven PHM and 
fixed-interval scheduled maintenance case. A socket 
is a location in a system (in the wind turbine) where 
a single instance of the item being maintained (a 
blade) is installed.  The socket may be occupied by 
one or more items during the lifetime of the system. 
The time history of costs for each of 1000 sockets is 
shown in Figure 9. The data-driven PHM case 
resulted in an overall lower life cycle cost (mean = 
€173,213) compared to the best fixed-interval 
scheduled maintenance case (mean = €356,999). The 
data-driven PHM case requires fewer spares 
throughout the support life of the system. This is 
primarily due to maximizing the useful life of the 
blades, i.e., early warning of failures in the data-
driven PHM case provided an opportunity to 
schedule and perform maintenance events closer to 
the actual failures, thus, avoid failures while 
maximizing the useful life. Alternatively, the fixed-
interval scheduled maintenance case resulted in 
either throwing-away more useful-life (early 
intervention).  In both cases, some unscheduled 
maintenance events (intervention that is too late) 
occurred. Intuitively the advantage of PHM over 

fixed-interval maintenance for this case is shown in 
Figure 8 where the life cycle cost was minimized in 
the PHM case when the prognostics distance was 
470 operational hours versus 8000 operational hours 
in the fixed-interval case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We now wish to estimate the return on 

investment (ROI) of the data-driven PHM approach 
relative to a fixed-interval scheduled maintenance 
approach. The mean total life cycle cost per blade, 
for a data-driven PHM approach, was €173,213 
(mean), with an effective investment cost per blade 
of €25,408 (mean), representing the cost of 
developing, supporting, and installing PHM in the 
blade. This cost was compared to the fixed-interval 
scheduled maintenance approach, where the total 
life cycle cost per blade was €356,999 (mean). Note 
that the investment cost for the fixed-interval 
scheduled maintenance policy is by definition zero; 
since the ROI is computed to support an economic 
justification in investing in PHM, as opposed to the 
fixed-interval scheduled maintenance case where 
there is no investment (i.e., zero investment) in 
PHM.  

Figure 10 shows the histogram of the computed 
ROIs for 1000-socket population (due to 
uncertainties in all quantities, each socket in a 
population will have a unique ROI). In this example, 
the computed mean ROI of investing in a data-
driven PHM approach for the population of blades 

Figure 8. Variation of mean life cycle cost with a fixed 

maintenance interval (1000-socket population). 

Figure 9. (a) Life cycle cost per socket for a 

fixed-interval scheduled maintenance approach. 

(b) Life cycle cost per socket for a data-driven 

PHM approach. 1000-socket population. 
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was 7.43. Notice that some of the ROI values in 
Figure 10 are negative.  This means that there is a 
risk that implementing a data-driven PHM approach 
for the blades could result in an economic loss, i.e., 
you could end up being worse off than fixed-interval 
scheduled maintenance.  Based on Figure 10, this 
example predicts that a data-driven PHM approach 
would result in a positive ROI (cost benefit) with a 
94.4% confidence. 

 
 
 
 
 
 
 
 
 
 
 

 

 

6 CONCLUSIONS  

This paper an overview of the failure of the major 

subsystems in wind turbines and their effect on 

availability. PHM is a possible solution for 

guaranteeing high availability of wind turbines 

eventually allowing them to compete with traditional 

energy sources. A PHM system, TRIADE, is 

presented as a possible solution for the health 

monitoring of blades and gearboxes in wind 

turbines, and a return on investment analysis is 

presented to support the economic benefit of the 

implementation.  

7 REFERENCES  

Andrawus J.A, Watson, J., Kishk, M., and Adam, A., 2006, 
The Selection of a Suitable Maintenance Strategy for Wind 
Turbines, International Journal of Wind Engineering, 30 
(6), 471-486 

Arabian-Hoseynabadi, H., Oraee, H., Tavner, P., 2010, Failure 
Modes and Effects Analysis (FMEA) for wind turbines,  
International Journal of Electrical Power & Energy 
Systems,  Volume 32, Issue 7, 817-824 

Asmus, P., and Seitzler, M., 2010, The Wind Energy 
Operations and Maintenance Report, Wind Energy Update 

Cheng, S., Azarian, M., and Pecht, M., 2010, Sensor Systems 
for Prognostics and Health Management, Sensors, No. 10, 
pp.5774-5797 

Cheng, S., Tom, K., Thomas, L., Pecht, M., 2010, A Wireless 
Sensor System for Prognostics and Health Management, 
IEEE Sensors Journal, Vol. 10, NO. 4,  

Djurovic, S., Williamson, S., Tavner, P., and Yand, W.,  2009 
Condition monitoring artefacts for detecting winding faults 
in wind turbine DFIGs” EWEC2009, Marseille, France 

Ebersbach, S., Peng, Z., and Kessissoglou, N., 2006, The 
investigation of the condition and faults of a spur gearbox 
using vibration and wear debris analysis techniques,” Wear, 
vol. 260, pp. 16-24 

Feldman, K., Jazouli, T., and Sandborn, P., 2009, A 
Methodology for Determining the Return on Investment 
Associated With Prognostics and Health Management, 
IEEE Transactions on Reliability, Vol. 58, No. 2  

Hameed, Z., Hong, Y., Cho, Y., Ahn, S., Song, C., 2009, 
Condition monitoring and fault detection of wind turbines 
and related algorithms: A review, Renewable and 
Sustainable Energy Reviews, vol. 13, 1–39 

Huang, Q., Jiang, D., Hong, L., and Ding, Y., 2008, 
Application of wavelet neural networks on vibration fault 
diagnosis for wind turbine gearbox, Proc. 5th International 
Symposium on Neural Networks, pp. 313-320  

Jazouli, T., and Sandborn, P., 2010, A "Design for 
Availability" Approach for Use with PHM, Proceedings of 
The Prognostics and Health Management Conference, 
Portland, OR 

Kansas energy data, URL: http://kcc.ks.gov/energy/chart.htm 
Kumar, S., and Pecht, M., 2010, Parameter Selection for 

Health Monitoring of Electronic Products, Microelectronics 
Reliability, Volume 50, Issue 2 

Kühn, P., 2007. Big experience with small wind turbines –235 
small wind turbines and 15 years of operational results, 
Proc. EWEC 

Musial, W., and Ram, B., 2010, Large-Scale Offshore Wind 
Power in the United Sates Assessment of Opportunities and 
Barriers, National renewable Energy Lab, Technical report 

Pecht, M., 2008, Prognostics and Health Management of 
Electronics, Wiley-Interscience 

Sandborn, P., and Wilkinson, C., 2007, A Maintenance 
Planning and Business Case Development Model for the 
Application of Prognostics and Health Management (PHM) 
to Electronic Systems, Microelectronics Reliability, Vol. 
47, No. 12, pp. 1889-1901 

Sotiris, V., Tse, P., and Pecht, M., 2010, Anomaly Detection 
Through a Bayesian Support Vector Machine, IEEE 
Transaction on Reliability, Vol. 1, No. 1,  

U.S. Department of Energy-Energy Efficiency and Renewable 
Energy, 2008, 20% Wind Energy by 2030, Increasing Wind 
Energy’s Contribution to U.S. Electricity Supply 

Wilkinson, M., Harman, K., Tavner, P., and Hendriks, B., 
2009, Derivation of Wind Turbine Reliability Profiles from 
Operational Data, European Wind Energy Conference and 
Exhibition 2009 

Yang, W., Jiang, J., Tavner, P., and Crabtree, C., 2008 
Monitoring wind turbine condition by the approach of 
empirical mode decomposition, ICEMS 2008, Wuhan, 
China 

Yang, W., Tavner, P., and Crabtree, C., 2009, An intelligent 
approach to the condition monitoring of large scale wind 
turbines,  EWEC2009, Marseilles, France, March 

Yang, W., Tavner, P., and Wilkinson, M., 2008, Wind turbine 
condition monitoring and fault diagnosis using both 
mechanical and electrical signatures, IEEE/ASME 
International Conference on Advanced Intelligent 
Mechatronics, Xi'an, China,  

 
 

Figure 10. Histogram of ROI for a 1000-socket 

population. 


