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 Lifetime Buys and Bridge Buys

• When an electronic part becomes obsolete…
• Lifetime buy is a mitigation approach that involves the purchase and 
storage of a part in a sufficient quantity to meet current and (expected) 
future demands. 

• Bridge buy is a buy made to meet current and (expected) future 
demands until the next redesign.

• Lifetime buys and bridge buys play a role in nearly every 
electronic part obsolescence management portfolio no matter 
what other reactive or proactive strategies are being followed.

• Determining the appropriate number of parts to purchase at a 
lifetime buy, is generally easier said than done.
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 Lifetime Buy Models

How many parts should you buy?

Every organization has developed some institutional 
knowledge governing lifetime buy buffer sizes, e.g.,

• For parts that cost less than x we buy 25% over demand
• For more expensive parts we buy 15% over demand
• Buffer sizes are, however, trumped by minimum buy sizes 

and what management is willing to signoff on

Models:
• Individual buy quantity models
• Life cycle cost minimization models

The target of these is 
to determine the 
buffer size
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 Stochastic Individual Buy Model

• Computes probability distributions of buy quantities for individual part 
lifetime or bridge buys

• Computes buy sizes that satisfy a specified confidence level
• Computes the probability of being overbought or underbought by a user 

specified quantity

Calculates the quantities of parts necessary to meet a given 
demand with a specified confidence

• Length of time you are buying for (in time periods)
• Demand forecast in each time period**

• Length of time needed to design out the part or identify another
solution (if necessary)

• Desired confidence level

All quantities can be entered as distributions
**Can be correlated period-to-period

Inputs
:
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 Stochastic Individual Buy Model
 (Algorithms)
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where 
Qi = marketing recommended buy quantity in time period i (all periods are 
assumed to have the same length)
L = length of the buy in time periods, i.e., the number of time periods until 
the part is no longer needed

= floor function (round down to the nearest integer).

This model assumes that redesigns (if any) are initiated a sufficient duration 
prior to L in order to be completed at L.
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 Stochastic Individual Buy Model
 (Stochastic Calculation)

• Both the Qi and L terms are uncertain (in addition to the length of the 
redesign).  

• Sample values of Qi and L are generated and used to compute sample lifetime 
buy quantities.  

• Sampling and calculation of lifetime buy quantities is repeated many times to 
generate a histogram of lifetime buy quantities using a Monte Carlo sampling 
approach. 

• The sampled length of the buy (Ls) is computed using the following relation,

• where
= Sampled forecasted length of buy in time periods
= Length of the redesign (mode) in time periods (planned length of redesign)
= Sampled length of the redesign in time periods (actual length of redesign).

Note, the length of the time periods cannot be uncertain, but the number of periods can be uncertain
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 Stochastic Individual Buy Model - Example

Time Period Distribution Type

Mode (None, 
Triangular, 
Normal)

Standard 
Deviation 
(Normal)

Low 
(Uniform, 
Triangular)

High (Uniform, 
Triangular)

Correlation 
Coefficient to 
Previous Period

1 Normal 11000 750 0.5
2 Normal 11000 750 0
3 Uniform 8500 13500 0.9
4 Normal 11000 750 0.9
5 Uniform 8500 13500 0.9
6 Uniform 8500 13500 0.9
7 Uniform 8500 13500 0.9
8 Uniform 8500 13500 0.5

9 Uniform 8500 13500 0.5
10 Uniform 8500 13500 0.5

Input Data (Demand Forecasts and Forecast Variation):

Input Data (Time Risks):
The length of the buy = 6 time periods
Length of the redesign out (time periods) = 0 to 7.5 (mode = 6) triangular distribution

Input Data (Analysis Control):
Confidence level = 0.9
Monte Carlo samples = 10,000
Number of standard deviations to plot = 3
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 Stochastic Individual Buy Model – Example

Outputs:
• Buy quantity as a probability distribution
• Buy quantity that satisfies confidence level

90% confidence required
Buy size = 78,661
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Outputs (continued):
• Probability of being overbought or underbought by a user 

specified quantity
• The graph on the right shows that there is a 68% probability that 

buying 78,661 parts will result in having a surplus of 5000 parts.

 Stochastic Individual Buy Model – Example
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Demand Forecasts

This is all dandy, but how do you figure out the demand 
forecasts?

Depending on the type of system you are managing, you 
probably have folks who perform demand forecasting, but 
how accurate have those demand forecasts proven to be in 
the past?
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Motivation for Data Mining
Many organizations maintain a significant history of data 
associated with the management of electronic parts, e.g., lifetime 
buy dates and quantities, plus inventory history.  If this data could 
be appropriately mined and interpreted, one could determine:

• Demand forecasting accuracy
• Product termination (date) prediction accuracy
• Design refresh durations (and the accuracy of forecasted durations)
• The frequency and size of over- and under-buys of parts made for 
bridge and lifetime buys

• Reverse engineering of past decisions to determine implicitly 
assumed confidence levels

• Frequency of additional last time buys

If these types of quantities could be determined on an organization-specific 
basis, they would be extremely valuable inputs into the process and 
optimization of future part management activities.
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Supply Chain Data Collected
The following data was collected:
• Part number
• Date of buy (lifetime or bridge)
• Projected (expected) completion date
• Buy completion status (done or not)
• Product(s) that the buy is for
• Type of product(s)
• People involved (originator, materials, finance, etc.)
• Finance and business organizations, business team
• Cost per part (at buy)
• Type of part
• Quantity forecasted
• Forecast model used
• Quantity in stock at buy
• Quantity purchased (+buffer size)
• Quantity remaining after completion
• Quantity known to have been consumed

181 complete lifetime and 
bridge buy records were data 
mined from a single 
operation in the supply chain 
of a major electronic systems 
OEM
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Search for Trends
We looked at the data in many different ways:

•Buy Date
•Plan Length
•Part Cost
•Total Buy Cost
•Demand Quantity

•

•% Consumed
•Plan Length
•Total Cost
•Total Quantity

Passed %Time

%Consumed
Allows complete and incomplete 
buys to be combined in trends 
(assuming constant consumption)

Sorted the data based on:
• Part type
• Product type
• People
• Organizations …
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All data points
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Searching for Trends

The previous slides show basically a whole lot of nothing! This 
is not a productive way to look at the data.

Two observations:
1) We need to look at a distribution of

2) Ideally, this would all be from finished buys (in which case the
metric is just %Consumed), but we don’t have enough data, so 
currently active buys are included too and we are making the 
assumption that their consumption plan is approximately 
linear when averaged over the whole buy.

is the only metric that really allows us to 
combine the complete and incomplete buy 
data

Passed %Time

%Consumed

Passed %Time

%Consumed
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Animation that morphs from this to the diagram on the next slide
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1

Overbuys Underbuys

Area1 = 
probability of 
an overbuy

Area2 = 
probability of 
an underbuy

Area1 + Area2 = 1

% Consumed/%Time Passed

What Does This Mean?

Mean = 0.8 (from slide 19) infers that there has been a tendency
to overbuy 
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1) Assuming the shape of the distribution on the last slide is the 
right shape, it can be fit with some functional form (may 
have to be piecewise – fit separately above and below 1) –
this should be done for the “Raw” numbers not the buffered 
numbers.

2) When a demand forecast number is provided, what do we do 
with it?  Construct a version of the distribution found above 
with the demand forecast at the “1” point.  This says that 
there is an Area1 probability of the forecast being too large 
and an Area2 probability of the forecast being too small –
which is the result we mined from the existing data.

3) This result defines the demand distribution that goes into the 
stochastic lifetime buy quantity model.

How This Result Can Be Used
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 Where Does the Individual Buy Model 
Fall Short?

• The individual buy model does not calculate the quantities 
of parts necessary to minimize life cycle cost (depending 
on how you are penalized for running short or running long 
these quantities could be different than what the simple 
individual buy model gives)

• The individual buy model treats one part at a time – you 
would really like to analyze all the parts at the same time so 
that coupling effects between parts are included, e.g., equal 
run out

Another model called LOTE treats the cost minimization optimization 
problem:
D. Feng, P. Singh, and P. Sandborn, "Optimizing Lifetime Buys to 
Minimize Lifecycle Cost," Proceedings of the 2007 Aging Aircraft 
Conference, Palm Springs, CA, April 2007. 
http://www.enme.umd.edu/ESCML/Papers/AgingAircraft07-LTB.pdf
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• The individual buy model calculates the quantities of parts 
necessary to meet a given demand with a specified confidence

• However, in order to use it you have to have demand forecasts 
and their associated uncertainties

• A method of data mining historical buy information has been 
proposed in order to establish demand uncertainties associated 
with lifetime and bridge buys

Summary

http://www.enme.umd.edu/ESCML/LTB/SimpleLTBModel_v1.1.zip

Stochastic Individual Buy Model:
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Appendix
(Non-Constant Consumption)
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Non-Constant Consumption

The rate at which parts are consumed by manufacturing and/or 
sustainment activities is usually not constant.

The consumption profile determines the rate at which parts are 
consumed and will alter the distribution of
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 Non-Constant Consumption Profile
 (Algorithms)

where 
i   = Current time period
Cj = Parts consumed during time period j
Qp = Total projected buy quantity
Ti = Number of time periods passed 
L = Length of the buy in time periods, i.e., the number of time periods 

until the part is no longer needed
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 Consumption Profiles
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