
 1 Copyright © 2011 by ASME

Proceedings of the ASME 2011 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2011
August 29-31, 2011, Washington, DC, USA

DETC2011-47644

 MODELING CONSTRAINTS IN DESIGN REFRESH PLANNING

Raymond Nelson III, Peter Sandborn
CALCE Center for Advanced Life Cycle

Engineering
Department of Mechanical Engineering

University of Maryland
College Park, MD 20742, USA

Janis P. Terpenny and Liyu Zheng
Center for e-Design

Virginia Polytechnic Institute & State University
Blacksburg, VA 24061, USA

ABSTRACT
When an original equipment manufacturer no longer

supplies and/or supports a product then the product is

considered to be obsolete. Obsolescence is a significant

problem for systems whose operational and support life is much

longer than the procurement lifetimes of their constituent

components. Unlike high-volume, commercial products, which

are quickly evolved, long field life, low-volume systems, such as

aircraft may require updates of their components and

technology called design refreshes to simply remain

manufacturable and supportable. However these systems can’t

perform design refreshes all the time due to the high non-

recurring and re-qualification costs. One approach to optimally

managing this problem is to use DRP (Design Refresh

Planning), which is a strategic method for scheduling design

refreshes such that the life cycle cost impact of obsolescence is

minimized. The planning of these design refreshes is restricted

by various constraints, which need to be implemented into the

DRP process. These constraints can reflect technology

roadmap requirements, obsolescence management realities,

logistical restrictions, budget ceilings and management policy.

In this paper, constraints imposed on the DRP process are

explored, classified within a taxonomy, and implemented in the

planning process. A communications system design example is

included.

Keywords: design refresh planning, obsolescence, DMSMS,

product life-cycle management (PLM), constraints

INTRODUCTION
 Obsolescence is defined as the loss or impending loss of

original manufacturers of items or suppliers of items or raw

materials [1]. The type of obsolescence addressed in this paper

is referred to as DMSMS (Diminishing Manufacturing Sources

and Material Shortages) and is caused by the unavailability of

technologies or components that are needed to manufacture

and/or support a product. In this paper, “component” refers to

the lowest management level possible for the system being

analyzed. Electronic systems suffer the most severe

obsolescence issues since electronic parts evolve quickly

because their supply chains are driven by high clock speed

products [2], such as mobile phones and laptop computers. In

some systems, the “components” are laptop computers,

operating systems, and cables; while in other systems the

components are integrated circuits (chips). DMSMS means that

due to the length of the system’s manufacturing and support life,

coupled with unforeseen life extensions to the support of the

system, needed components become unavailable (or at least

unavailable from their original manufacturer) before the

system’s demand for them is exhausted. Component

unavailability from the original manufacturer means an end of

production and/or support for the component. It is possible for

aftermarket suppliers to continue to sell a component after

obsolescence; however not all components are available in the

aftermarket and buying components in the aftermarket is

expensive and introduces additional risks that may be

unacceptable for many types of systems, e.g., counterfeit risk

[3].

 The DMSMS type obsolescence problem is especially

prevalent in “sustainment-dominated” systems where the cost of

maintaining the system over its support life far exceeds the cost

of manufacturing or procuring the system [4]. Sustainment in

this paper refers to three things: keeping the system operational,

continuing to manufacture and install versions of the original

system that satisfy the original requirements, and finally the

ability to manufacture and install versions of the original system

that satisfy new and evolving requirements. Examples of

 2 Copyright © 2011 by ASME

sustainment-dominated systems include airplanes, power plant

controls, medical systems, military systems,

telecommunications infrastructure, and other safety- and

mission- critical systems. These types of systems have long

enough design cycles that a significant portion of the

technology in them is obsolete prior to the system being fielded

for the first time. Once in the field, their operational support can

be 30 years or more [5]. For these systems, simply replacing

obsolete components with newer components is often not a

viable solution because of high re-engineering costs and the

prohibitive cost of system re-qualification and re-certification.

For example, if an electronic component in the 25-year old

control system of a nuclear power plant fails, an instance of the

original component may have to be used to replace it so as to

not jeopardize the “grandfathered” certification of the plant.

 Effective long-term management of DMSMS in systems

requires addressing the problem on three different management

levels: reactive, pro-active and strategic.

 Reactive management level is concerned with determining

an appropriate, immediate resolution to the problem of

components that are obsolete or soon will be. Common reactive

DMSMS management approaches include: lifetime buy, bridge

buy, alternative or substitute parts, buying from aftermarket

sources, uprating, emulation, and salvage [6]. For example,

lifetime buy refers to buying enough components from the

original manufacture prior to the component’s discontinuance to

support all forecasted future manufacturing and support needs,

and bridge buy means buying a sufficient number of

components to reach a pre-determined future date (refresh date)

when the component will be designed out of the system.

 Pro-active management means that critical components

that: a) have a risk of going obsolete, b) lack sufficient available

quantity after obsolescence, and c) will be problematic to

manage if/when they become obsolete; are identified and

managed prior to their actual obsolescence event.

 Strategic management of DMSMS means using

obsolescence data, logistics management inputs, technology

forecasting, and business trending to enable strategic planning,

life cycle optimization, and business case development for the

support of systems. The most common approach to DMSMS

strategic management is DRP (Design Refresh Planning), which

consists of choosing the best mix of design refreshes and

reactive management approaches. A design refresh means

replacement of one or more obsolete components with non-

obsolete components in order to keep the system sustainable.

Between design refreshes, the system’s design cannot change,

i.e., manufacturing of new systems and maintenance of existing

systems is allowed, but changes to the bill of materials (list of

components) cannot be made.

 Section 2 describes the design refresh planning process and

Sections 3 and 4 focus on constraint formation and

implementation.

DESIGN REFRESH PLANNING
 The objective of DRP (Design Refresh Planning) is to

determine when design refreshes should occur such that the life

cycle costs of the system are minimized. Value is usually gained

from the DRP models through the identification of cost

avoidance opportunities (opportunities to avoid future

sustainment costs) associated with optimal planning of refreshes

(optimal set of refresh dates or the optimal frequency at which

to refresh a system); optimal mixing of reactive DMSMS

mitigation solutions with design refreshes, or by identifying

refresh points early enough that appropriate budgets and

resources can be put in place.

 Figure 1 identifies the inputs and outputs of the DRP

process. The four main inputs to the DRP process are the BOM

(Bill of Materials) of the system being managed, the forecasted

obsolescence dates
1
 for the components in the bill of materials,

the future demand for the system being produced and sustained

1 Forecasting the date on which original manufacturers of electronic

components discontinue the components (the obsolescence date) has been

previously treated in the literature, e.g., [7-9] and is commercially available

from several sources. Availability of components from the aftermarket may

extend the effective obsolescence date for some components, however, not

every component is available in the aftermarket and depending on the nature of

the system being supported, aftermarket parts may not be an acceptable

solution due to counterfeit and other risks.

System Bill of
Materials

(List of Parts)

Forecasted

Obsolescence
Dates

Future System
Demand

Design Refresh Planning (DRP)

Design Refresh Plan (x)

Refresh Plan that Results in the Lowest Associated Life

Cycle Cost of the System

Reactive
Management

Plan

Constraint

g(x, p)

Life Cycle Cost

ƒ(x, p)

Figure 1. DESIGN REFRESH PLANNING (DRP) PROCESS SHOWING
THE REQUIRED INPUT DATA AND THE RESULTING OUTPUT.

 3 Copyright © 2011 by ASME

(future manufacturing needs and spare parts required to

maintain fielded systems), and the reactive management plan

(applied between refreshes).

 The BOM contains component specific information such as

component quantity and cost. The BOM is also the input to an

obsolescence forecasting method, the output of which is

obsolescence dates for all the components in the BOM. The

DRP process simulates a timeline of events based on the input

data and generates various combinations of design refresh dates.

Each unique combination of design refresh dates is referred to

as a design refresh plan. The plans are analyzed with a life cycle

cost model. The cost of a design refresh depends on the specific

components it replaces and the necessary re-qualification costs

– even relatively minor changes may become prohibitively

expensive if system re-qualification is necessary. Once

associated with a cost, a series of constraints are applied to the

plans (to identify the plans that are not feasible). The design

refresh plan that has the lowest associated life cycle cost out of

the selection of feasible plans is then selected.

The DRP problem can be formulated as shown in Eqn. (1):

minimize:

 1 1

(,)

1 1
100 100

i j

n r
ji i

d d
i j

NREQ C
f

R R= == == == =

= += += += +
            

+ ++ ++ ++ +            
            

∑ ∑∑ ∑∑ ∑∑ ∑x p

(1)

subject to: gk(x, p) ≤ 0 ; k = 1,…,K

where,

Qi Quantity of systems to be manufactured at the ith

manufacturing event, including spares

Ci Recurring cost of manufacturing a system instance

at the ith manufacturing event, including spares

NREj Non-recurring cost of the jth design refresh

n Number of manufacturing events

r Number of design refreshes in the plan

R After tax discount rate on money

di ; dj Difference in years between ith/jth

manufacturing/design refresh event date and the

base year for money

k Index used to identify constraint

K Number of constraints

m Number of parameters

 The objective function, f(x, p) calculates the LCC (Life

Cycle Cost) for the system being modeled. The LCC objective

function is dependent on x = [x1,…,xr], which is the design

variable vector and p = [p1,…,pm], which is the set of

parameters. The design variable is a vector of zero or more

design refresh dates representing one design refresh plan. It is

assumed that the design variable can be changed (i.e., the

design variable x can be varied to create various unique

alternative refresh plans). The design variable is subject to

inequality constraints, g(x, p).

 For parameters, it is assumed that they cannot be changed

(i.e., they have uncontrollable variations within a known range).

The parameters used in the LCC objective function have

uncertainty; however, everything is known about the behavior

and range of variation for each parameter. The values stored as

parameters can be the production schedule, forecast

obsolescence dates, and costs for different DRP activities. Since

the values used in the design variable vector and the set of

parameters represent monetary and quantitative amounts, x and

p are restricted to real values.

 The next section will discuss the types of design refresh

planning constraints that can be imposed.

CONSTRAINT TAXONOMY
 Constraints imposed in the DRP process can reflect

technology roadmap requirements, obsolescence management

realities, logistical restrictions, budget ceilings and management

policy.

 The constraint taxonomy proposed in this paper was

created from the viewpoint of an organization sustaining a

system. This organization can be a private company,

government agency, or any group sustaining a system (e.g.,

desktop computers or aircraft). The term sustaining has the

same meaning as earlier defined, which succinctly means to

maintain existing systems and manufacture new systems.

Relativistic words such as “I” or “internal” refer to the

organization sustaining the system.

 Figure 2 shows a constraint taxonomy that classifies

constraints based on the permission and ability to perform a

design refresh activity (the taxonomy in Fig. 2 is akin to the

classic English lesson that differentiates “May I” and “Can I”).

 A permission-based constraint represents a restriction

imposed by an authority entity on the organization sustaining a

system. Permission to perform an activity is based on the

authorization from imposed written law, supervisory actors

(e.g., company management, business owner), applicable

national/international standards and specifications, and

contractual commitments. The authority entity can be a single

person or a group of people; however, the only stipulation that

qualifies an authority entity is that whatever restrictions

imposed by the authority figure must be obeyed by the

organization sustaining a system otherwise vulnerabilities,

penalties, and other various enforcement activities on the

organization by the authority entity will be incurred.

Permission-based constraints are classified based on whether a

constraint is enforced externally or internally. For example, an

externally imposed permission constraint could be a law

enacted and enforced by the Federal government. An internally

imposed permission-based constraint could be a policy created

by management and enforced by supervisors at the organization

sustaining a system.

 4 Copyright © 2011 by ASME

 There are three categories of external sources of authority

that can originate permission-based constraints: contract,

legislation and standard. A contract is a legally binding

agreement between the organization sustaining a system and a

non-affiliated entity such as a customer who purchases the

systems that the organization manufactures. Any contractual

commitments between the two that affect the design refresh

activities performed by the organization sustaining a system

creates permission-based constraints. Legislation such as any

law that affects the design refresh planning activities creates a

permission-based constraint. A standard is a document that

establishes a rule or measure (either minimum, maximum or

optimum) for quality or level of performance. Any standards

adhered to by an organization in order to establish a

certification of some type is a source of permission-based

constraints.

 Next are the two internal sources of permission-based

constraints: policy and decree. Policies are usually created over

time as problematic issues arise that warrant an internal “design

rule” or guideline used as a tool to mitigate or even avoid a

problem from occurring. When a policy affects the planning of

a design refresh it creates a constraint that is self-imposed.

Decrees (i.e., an executive order) unlike policies do not

necessarily encompass every aspect of the life cycle

management process; rather decrees should be viewed as

policies limited to specific aspects of the life cycle planning

process and are generally more limited in scope and complexity.

The decree can be viewed as instantaneous restrictions to

specific aspects of the design refresh planning activities,

whereas policies encompass every aspect of the refresh

planning process. Decrees and policies belong to the

permission-based category of constraints because these

constraints if broken do not physically prevent an organization

from performing a design refresh activity, rather the actors

within the organization who violate these permission-based

constraints will suffer various disciplinarian actions such as

penalties and punishments resulting in a disruption of life cycle

management activities.

 The ability to perform an activity is based on physical

parameters such as the available funds, resources, and time.

Ability-based constraints represent all the capacities of an

organization for managing a system. There are three aspects in

any organization that have quantifiable capacities: schedule,

budget and resource. Scheduling constraints can require certain

activities such as design refresh activities to occur before a

specified date. Budget constraints can place expenditure

ceilings on all activities, preventing over spending. Resource

constraints prevent using more than the available resources such

as people or workspace.

 In order to implement the various constraints shown in Fig.

2, information on the aspects of the system restricted by the

constraints needs to be determined.

 Any constraint imposed on the DRP process will control

the planning of a design refresh in three fundamental areas:

financial, logistical and temporal. For example, a constraint that

constrains financially may place an upper bound on the money

available to perform design refreshes or other management

activities in a particular period of time. A constraint that

constrains logistically would limit the number of facilities

performing design refreshes (e.g., a finite number of dry docks

for ships). A constraint that restricts temporally will require the

design refresh activity to complete within a specific period of

time for technology insertion to upgrade a system's capability,

or may preclude specific periods of time for design refresh

because the system to be refreshed is unavailable (e.g., a

submarine is gone for 12 months and the design refresh can

only be performed at its home base).

 This paper focuses on how constraints restrict temporally

and specifically how they are implemented in the management

of sustainment-dominated electronic systems. Constraints that

constrain logistically and financially in general are less difficult

to implement, whereas constraints that constrain temporally

require more derivation and formulation. For the DMSMS

affected systems, constraints that restrict temporally are the

most prevalent DRP drivers.

Temporally Restrictive Constraints
Constraints that restrict the timeline of a design refresh planning

activity usually take the form of inclusive inequalities because

they represent ranges of time when at least one design refresh is

required to be completed. These constraints are typically

derived from events such as obsolescence events, legislation

enactment events, changes in standards events, etc., because a

large majority of system constraints are geared toward

mitigating the impacts of those events.

Constraint

Permission
(“May I”)

Ability
(“Can I”)

External Internal

Policy

StandardLegislation Contract

Decree

Budget Resource Schedule

Figure 2. CONSTRAINT TAXONOMY.

 5 Copyright © 2011 by ASME

 Constraints that constrain temporally are usually bounded

ranges of time that require one or more design refresh activities

to complete within them; however, those bounds are unknown at

the beginning of the DRP process. What is known at the

beginning of the DRP process is the event that results in the

temporally restrictive constraint. To determine the constraint

bounds for constraints that are the result of a component’s

obsolescence we must determine which of the following

scenarios applies: does the component’s obsolescence event 1)

affect both the operation and the production of the system, 2)

affect production and not operation, or 3) not affect either

activity. It will be assumed that if the component's obsolescence

event affects the operation of the system, then the production of

the system is also affected. Knowing how the component's

obsolescence event affects the operation and production of a

system will determine if and how an explicit constraint will be

constructed. Three possible general scenarios called

obsolescence event types have been identified, and their

definitions are described in the next section.

Obsolescence Event Type Definitions
 In the following obsolescence event type definitions, the

term obsolete can take on several meanings depending on the

component restricted by the system constraint. If the component

is a piece of hardware, obsolete generally means you cannot

procure the item from the original manufacturer; however, in

some cases the item may remain available from your existing

inventory or through aftermarket sources. If the component is a

single legal copy of software, obsolete usually means you can

no longer obtain software updates such as service packages or

security patches.

“Weak” Obsolescence Event. No change to

previously fielded (installed) systems or systems to be

manufactured in the future is required. As long as the obsolete

item is available (from existing stock or aftermarket sources),

new systems can be manufactured and fielded using it and

previously installed systems can be repaired with it if necessary.

 System constraints often identify hardware (electronic

components for the applications discussed in this paper) as

being a Weak obsolescence event. The rationale behind this is

that if hardware goes obsolete there is no reason to change it as

long as you have access to a sufficient supply of the obsolete

component to satisfy manufacturing and support requirements.

“Strong A” Obsolescence Event. Fielded (installed)

systems can continue to operate with the obsolete item and can

be repaired with the obsolete item if it needs replacement due to

a failure of the item. However, new systems to be manufactured

in the future cannot be built and fielded with the obsolete item

(whether the obsolete item is available or not).

 A recent example of a system constraint that resulted in an

organization identifying a component's obsolescence event as

“Strong A” was caused by the European legislation called the

Restriction of Hazardous Substances (RoHS) Directive [10].

This legislation regulates many of the commonly used

substances in electronics and restricts the use of several

materials deemed hazardous by the European Union (EU). The

most problematic material for electronic systems is lead, which

historically is a primary ingredient in solder. The legislation

only pertains to electronic systems sold in the EU after July 1,

2006 so any system fielded prior to July 1, 2006 with non-

compliant electronic components can continue operating and be

maintained with non-compliant components; however, new

instances of the system to be manufactured and sold in the EU

market must comply with the RoHS directive by ensuring that

every component and subsystem is RoHS compliant regardless

of the availability of non-compliant components.

“Strong B” Obsolescence Event. Fielded (installed)

systems are not allowed to continue to operate with the obsolete

item and must be backfitted within a defined time period. New

systems cannot be built and fielded with the obsolete item

(whether the obsolete item is available or not).

 An example of a system constraint that identifies a

component's obsolescence event as “Strong B” is an electronic

data security policy. Consider a military ship-board

communication system that has computers on its network that

are connected to the public web running a commercial operating

system that is about to reach its end of support date (the

effective obsolescence date for the software), end of support

means the end of security patches and the potential for a

security risk if not replaced. In this example the operating

system is the component. To maintain its security integrity the

customer for the system puts in place a policy that the

computers cannot continue to operate with the obsolete

operating system, so any installed systems with the obsolete

operating system will have to be backfitted
2
 and any new

instances of the system will have to be delivered with a non-

obsolete operating system.

 The next section will explain the process of taking the

information known about the system constraint (i.e., the

obsolescence event type) and forming an explicit DRP

constraint.

Constraint Implementation
 Component instances that are in a “Strong” obsolescence

event category will be examined because only the “Strong”

2 A backfit consists of a refresh of the fielded version(s) of the system and an

implementation of the refresh on all fielded applicable instances of the system.

The number of implementations of the backfit refresh is determined by

reviewing all fielded versions of the system and accumulating appropriate

quantities of affected system elements, see Constraint Implementation.

 6 Copyright © 2011 by ASME

obsolescence events result in modification of the DRP process.

It is important to note that the obsolescence event types are not

necessarily dependent on the component, but rather the

relationship between the component and where it is located in

the system (i.e., the component’s context). A constraint may not

specify an exact component, but rather a specific effect a

component's obsolescence event has on the system. The same

component could appear in multiple locations within a system

and generate a different constraint in each case; therefore, every

component must be examined in a system even if it is not

unique.

 This section presents an algorithm that generates

(synthesizes) temporal constraints (i.e., constraints that

constrain temporally). The inputs for this algorithm are the

production/deployment schedule, the system bill of materials,

forecasted obsolescence information on all components, end of

support dates, the refresh plan under consideration and

obsolescence mitigation assumptions such as look-ahead time,

and replacement component assumed procurement life upon

adoption. The numerical values, such as those that pertain to

dates, can include uncertainties in this algorithm. This is

important especially since the input uncertainty is often large

for DRP problems.

Step 1: Create the Constraint. In order to build

temporal constraints for components that are identified as

causing a “Strong” obsolescence event we need to determine the

constraint start date (CS) and the constraint end date (CE), which

form the constraint period. The constraint start date is

calculated by subtracting the look-ahead time (LAT) from the

forecasted date of obsolescence (Do). LAT is the amount of time

the refresh plan “looks-ahead” during a design refresh for

forecasted component obsolescence issues and pro-actively

removes components that are forecasted to have obsolescence

problems within the LAT of the completion of the current design

refresh.

 The LAT is limited by how far into the future the

obsolescence forecasting method can forecast and is set by the

life cycle management of the system based on how it affects the

life cycle cost of the system.

 Equation (2) determines the constraint start date (CS);

however, it needs to be expressed as an inequality constraint in

order to be applied to the life cycle cost minimization problem

in Eqn (1). The first of a pair of explicit constraints can be

written as:

 It should be noted that x in Eqn. (3) is the design variable,

which in this case is a design refresh plan with r number of

design refresh dates placed in a vector. Any design refresh date

can satisfy the constraint and rather than write out r constraints

with the individual design refresh dates, which would be

cumbersome, the constraint is left in this form with the

understanding that x is a vector of values, each of which can

satisfy the constraint.

 The constraint end date (CE) depends on the type of

“Strong” obsolescence event. In the case of a “Strong A”

obsolescence event, the constraint end date is the next date of

production (DP) also called a production event, i.e., the next

date when the component is needed to support the system

(manufacturing or sparing). A production event includes all the

activities that result in the creation of a system instance or the

replenishment of spares. The amount of time between the CS

and CE consists of two periods: the look-ahead time and the

“waiting time” (WT). The “waiting time” is specific only to

“Strong A” constraints and is the time the component is allowed

to remain obsolete within the current system design after which

a design refresh must occur. This secondary period of time is

called “waiting time” because the component is “waiting” for a

design refresh after it has gone obsolete. The look-ahead time

and waiting time durations are defined by Eqn. (2) and (4)

respectively,

 The “waiting time” was defined to help distinguish between

the constraints created from the “Strong A” and “Strong B”

obsolescence types. It is not a parameter that can be assigned a

value; rather it is a measure of time between the obsolescence

event of a component and the following production event.

 In the case of “Strong B” obsolescence event types, an

immediate design refresh corresponding to the obsolescence

event is required. Just like the “Strong A” constraints, “Strong

B” constraints have a period of time before the obsolescence

event called the look-ahead time and Eqn. (2) can be used to

find the constraint start date (CS). Unlike “Strong A”

constraints, “Strong B” constraints do not have a “waiting time”

because by definition they require an immediate design refresh,

so the constraint end date (CE) is the same as the obsolescence

date (Do), (i.e., CE =Do). The biggest difference between

“Strong B” and “Strong A” constraints is that “Strong B”

constraints include a backfit for all fielded systems that are

affected by the obsolescence of the “Strong B” component.

With the constraint end date known, the second of a pair of

explicit constraints can be written as:

 The combined pair of Eqn. (3) and (5) forms an overlap of

inequality constraints that result in a bounded range. This range

is the constraint period during which a design refresh (x) must

complete its activities.

 The cost of the backfit process can be broken up into two

parts: the backfit development cost (a non-recurring cost) and

the backfit implementation cost (a recurring cost for each

fielded system instance). To implement the backfit, an

additional production date is inserted into the production

(((())))1 Sg = - C 0≤≤≤≤x x (3)

S oC D LAT= −= −= −= − (2)

OPOE DDDCWT −=−= (4)

(((())))2 Eg = C - 0≤≤≤≤x x (5)

 7 Copyright © 2011 by ASME

schedule at the same date of the “Strong B” obsolescence date

so that costs associated with the implementation such as

inventory and carrying costs are reduced, otherwise known as a

just-in-time refresh strategy (see footnote 5 in Case Study).

Similar to a production event that produces new instances of the

system, this inserted production event has a production quantity

that is the number of affected, fielded system instances;

however, in this context it is implementing backfits rather than

creating new system instances. This inserted production event

(i.e., backfit implementation event) is treated the same as any

other production event, except when it comes to creating

“Strong A” constraints. This inserted production event should

not be used as a constraint end point since by definition the

“Strong A” component can remain a constituent component as

long as no new system instances are being produced. And since

this inserted production event is not producing new system

instances, any obsolete “Strong A” component can remain

obsolete until the next production event that produces new

instances of the system.

Step 2: Creation of Component Replacements and
Their Constraints. In many cases the procurement lifetimes

of electronic components are significantly shorter than the

manufacturing and support lives of sustainment-dominated

systems, therefore, a component’s replacement (at a design

refresh) may also go obsolete before the end of the system’s

operational life. In order to model this effect, the components

that replace the original component need forecasted

procurement lifetimes and obsolescence dates. This means that

additional constraints associated with the synthesized

replacement components also need to be created.
 This step does three things: simulates a replacement for the

predecessor component
3
 that went obsolete; generates the

replacement’s obsolescence date; and if the replacement’s

obsolescence event is before the end of support date of the

system, simulates additional replacement components.

 In order to determine whether the simulated replacement

component will go obsolete within the analysis period, the

obsolescence date of the replacement component must be

generated. The three pieces of information needed to model the

replacement component’s obsolescence date are the

procurement lifetime [9], the life cycle code of the replacement

component, and the obsolescence date of the predecessor

component. For simplicity, assume that the procurement

lifetime, the length of time the component can be procured from

its original manufacturer, of the replacement component is the

same as the predecessor component. Next, the life cycle code of

the replacement component is selected. Depending on the

application (i.e., risk tolerance for the adoption of new

components) different component maturities could be targeted.

3 The predecessor component is a component followed or replaced by another

component (the replacement component).

A component’s maturity is defined by where it is on its life

cycle curve at a specific point in time [11]. The life cycle curve

is divided into regions that reflect the rate of a component’s

maturity that correspond to the following life cycle codes: 1 =

emerging, 2 = growth, 3 = maturity, 4 = decline, 5 = phase out,

6 = obsolete. Sustainment-dominated systems are usually

extremely risk adverse and may only select components that

have life cycle codes of 2 or 3 (whereas a high-volume

commercial application might choose components with life

cycle codes of 1 because their success depends on being state-

of-the-art). With the procurement lifetime and life cycle code

selected, the obsolescence date for the replacement component

can be calculated. Equation (6) is used to generate the

obsolescence date of new components introduced at design

refreshes.

 In the event that the procurement lifetime of the original

component is not known or cannot be determined, then the

procurement lifetime corresponding to the component type can

be used. The procurement lifetime of the component type is the

average of the lifetimes of all the components in the system’s

bill of materials that have the same functional type. Life codes,

obsolescence dates and procurement lives for existing

components can also be obtained from commercial electronic

component databases.

 Once an obsolescence date for the synthesized replacement

component has been determined, if it is earlier than the system’s

end of support date, then the type of constraint will determine

how the calculated obsolescence date is used.

 In the case of a “Strong A” constraint, the obsolescence

date for the synthesized replacement component must be later

than previously created constraint end date for the predecessor

“Strong A” component since the predecessor “Strong A”

component's obsolescence event does not force a design refresh

for the system until the next production event. If the

obsolescence date of the synthesized replacement component is

not later than the previously created predecessor “Strong A”

component constraint end date then the procurement lifetime of

the predecessor “Strong A” component is successively added to

the synthesized replacement component obsolescence date until

the resulting date is later than the constraint end date. This

scenario can occur when the time between production events is

larger in comparison to the “Strong A” component's

procurement lifetime (L). A production event must follow the

o R

o pc

o I

I I
D D L

I I

    −−−−
= += += += +     

−−−−    
 (6)

where

Do = Date of obsolescence

Dpc = Date of obsolescence for the predecessor component

Io = Life cycle code indicating component is obsolete

II = Life cycle code indicating component is emerging

IR = Life cycle code of synthesized replacement component

L = Procurement lifetime

 8 Copyright © 2011 by ASME

obsolescence date for the synthesized replacement component

otherwise no constraint is required.

 In the case of a Strong B constraint, once an obsolescence

date for the synthesized replacement component has been

determined, steps 1 and 2 in the constraint generating algorithm

are used to create the corresponding constraint in addition to

determining if another synthesized replacement component is

needed.

Step 3: Constraint Implementation. In general, all

constraints are applied to the design variable and joined with a

logical “AND” so that all constraints must be satisfied for a

design refresh plan to be considered viable; however, the

temporal constraints developed in the algorithm described in

this paper are applied in a different way. The temporal

constraints developed for the DRP process are grouped into

pairs (i.e., bracketed) because they share a common variable.

Each half of a constraint pair bounds a positive or negative

infinite range, which when the constraints are joined with a

logical “AND”, together they bound a limited range. For a

unique constraint pair, only one value of the design variable

vector is needed to satisfy the unique constraint pair.

 As described in the previous steps in this algorithm, these

constraints are dependent on the obsolescence dates and

production dates. Because of the input uncertainty inherent in

these dates, it is possible and quite common that no single

unique refresh plan will be viable for all possible variations of

the system and constraints. Therefore, the constraints are

applied after all the candidate refresh plans are generated rather

than generating a subset of plans (e.g., via design-space

searching or an iterative method). Post processing the solution

with constraints ensures that all possible combinations of

refresh plans are evaluated on an equal basis. For example, if

the input uncertainty is modeled using probability distributions

for all input data using a Monte Carlo approach, the same

sampled input data used to calculate the life cycle cost for

associated design refresh plans is the same sampled data used to

generate all constraints. With uncertainty modeled identically in

both the DRP process and the constraint generating method, it is

possible to assess the probability that individual design refresh

plans will satisfy all the constraints.

MODELING UNCERTAINTY
 DRP models that incorporate input uncertainty have been

developed [12]. However, existing DRP models do not assess

the probability of a design refresh plan not satisfying all

constraints nor do they estimate the cost of design refresh plans

that violate constraints.

 In order to determine the probability that the design refresh

plan will satisfy all imposed constraints, it is necessary to

determine the probability of each constraint being satisfied. The

product of all the probabilities equals the probability that a

design refresh plan will satisfy all constraints.

 For example, consider the special case where the time a

design refresh “looks-ahead” into the future at the beginning of

the design refresh to proactively resolve forecasted

obsolescence is set to zero, meaning at the beginning of a

design refresh, only components that are already obsolete are

resolved and no components that are forecasted to be obsolete

in the future (within the “look-ahead” time) are resolved. In this

special case, a constraint that requires a design refresh to

resolve the obsolescence of a component and complete its

activities before the next production event is imposed. To

determine the probability that a design refresh will satisfy the

imposed constraint, which requires it to complete its activities

between the obsolescence event of the component and the

following production event is done by creating a probability

aggregate, which is the product of the probabilities that the

order of events is logical. For example, the date a component

goes obsolete (dObsolescence) must take place before a design

refresh (dRefresh) that resolves the problems the obsolescence

event created completes its activities that should then be

followed by the production date (dProduction) that incorporates the

updates made by the design refresh. This is done by taking the

probability for the correct chronological order of events and

multiplying them together to form a probability aggregate:

(((()))) (((()))) (((())))= < < <1 Obsolescence Refresh Refresh Production Obsolescence ProductionP P d d P d d P d d

(7)

 Equation (7) is gives the probability for one design refresh

satisfying one constraint. If there are multiple constraints that

need to be satisfied then probabilities for the remaining

constraints being satisfied need to be determined to compute the

final probability of a design refresh plan satisfying all

constraints.

 A less efficient but more versatile method for

approximating the probability that a design refresh plan satisfies

the constraints is to use a Monte Carlo method and simply run

the DRP model a statistically significant number of times, and

determined the fraction of runs in which the refresh plan

satisfied all constraints.

CASE STUDY
 To demonstrate the design refresh planning process with

constraints, a case study was performed based on a portion of a

communications system consisting of one server cabinet with

several racks. The entire system is represented by a bill of

materials with a total of 79 components. This communications

system is sustainment-dominated and this example includes

supporting as well as producing several instances of the server

cabinet design. Table 1 provides information on the scheduled

production of the communications system. All production

activities are planned to be completed in the month of January

for each scheduled production year.

 9 Copyright © 2011 by ASME

Table 1. THE PRODUCTION DATES AND ASSOCIATED PRODUCTION
QUANTITIES MAKE UP THE PLANNED PRODUCTION SCHEDULE.

Production

Year
2007 2008 2009 2015

Production

Quantity
4 4 4 2

 For this case study, the DRP modeling environment used is

a DRP software tool called MOCA (Mitigation of Obsolescence

Cost Analysis) [12], which is a DRP methodology for strategic

management of systems affected by DMSMS. The MOCA

model utilizes input data in terms of hardware and software, and

determines the life cycle cost of multiple refreshes coupled with

the reactive mitigation approaches. MOCA takes as its input the

bill of materials (BOM) for a given system, along with the

procurement cost and forecasted obsolescence dates or

procurement lifetimes of the individual components.

 The first system constraint for this case study is the

Restriction of Hazardous Substances Directive (RoHS). This

constraint identifies any electronic component that is not RoHS

compliant as the components being restricted from being built

into new systems beyond a specified date. Because this

constraint only prohibits the manufacturing of new systems

containing these components, then this system constraint has

identified the date at which non-compliant electronic

components are prohibited from being built into new systems as

a “Strong A”. There were 7 components identified as causing a

“Strong A” obsolescence event.

 The second system constraint for this case study is an

information security policy that states, “No software regardless

of function is permitted to operate beyond its end of support

life. Exemptions to this policy may be used beyond their end of

support life; however, new systems may not be built with the

exemptions. Exemptions include: drivers, firmware, and BIOS.”

This constraint applies to all software used in the system.

Because it affects the operation of the components it also affects

the manufacturing of systems containing those components, thus

this system constraint identifies the obsolescence event of these

components as “Strong B”. With the component types identified

as causing a “Strong B” obsolescence event, the system whose

BOM is composed of 79 total components is searched for the

affected component types. There were 12 components identified

with the component types restricted by the policy.

 For the sake of brevity, Tab. 2 provides obsolescence

information
4
 on the three selected example components.

 The constraint-generating algorithm is repeated to ensure

all constraints for the Driver, Hardware, and Software are

formed. The resulting pairs of explicit temporal constraints are

shown in Tab. 3.

4 Date Representation – to simplify calculations all dates have been represented

as the number year plus the fraction of the year that the date occurs. For

example, the date July 16, 2007 is the represented as 2007.54 since July 16 is

the 197th day out of the year so the year fraction is 197/365≈0.54.

Table 2. SUBSET OF COMPONENTS WHOSE CONSTRAINT SYNTHESIS WILL
BE DEMONSTRATED IN THIS CASE STUDY.

Component Obsolescence

Date

Procurement

Lifetime

(years)

RoHS

Complient

Driver 2007.5 10 N/A

Hardware 2018 30 No

Software 2009.54 10 N/A

Table 3. CONSTRAINTS FOR CASE STUDY.

Component Start Date (CS)

(See Eqn. (3))

End Date (CE)

(See Eqn. (5))

Driver g1(x)=x-2004.50≤0 g2(x)=2008.00-x≤0

Hardware g3(x)=x-2011.00≤0 g4(x)=2015.00-x≤0

Software g5(x)=x-2006.54≤0 g6(x)=2009.54-x≤0

Software g7(x)=x-2015.54≤0 g8(x)=2017.54-x≤0

 The assumptions for the DRP process are: look-ahead time

(LAT) is set to 3 years, RoHS compliance date of January 1,

2014 an end of support date of 2020, an analysis period from

2005 to 2020, and a replacement component life cycle code of 2

(IR = 2). It will be assumed for this system that there are no

penalty costs or fees associated with violating a constraint. An

example of these penalty costs is when a design refresh occurs

after a production date causing a delay in production which

results in a penalty cost.

 Figure 3 shows the results of the MOCA analysis of the

example described in this section without applying constraints

and without uncertainty.
5
 Figure 4 shows the results of the

MOCA analysis with the above generated constraints applied

along with 5 other “Strong A” constraints. The horizontal axis

of the graphs shows the mean date for each refresh plan (each

point is plotted at the mean of all the refresh dates in the plan)

and the vertical axis shows the corresponding total life cycle

cost. The data points each represent unique design refresh plans

(unique combinations of design refresh dates). The shape of the

data point indicates how many design refreshes are in the

refresh plan. The filled circles are plans that consist of exactly

one refresh (i.e., one design refresh date); the triangles have

exactly two refreshes in their plans; the square represents plans

with exactly three refreshes in them, etc. The rectangle (dash) is

the zero refresh plan, which has zero refresh dates (i.e., all

obsolescence is managed with lifetime buys for this example)

and acts as a comparison life cycle cost between doing nothing

(i.e., zero refresh) and doing something (i.e., one or more

5 In order to produce a finite number of candidate design refresh dates, MOCA

uses a “just in time” refresh policy in which the only allowed points in time

where a refresh can finish are just before demand for systems, e.g., production

events or spares demand. This assumption is discussed in detail in [12].

 10 Copyright © 2011 by ASME

refreshes). The points in Fig. 3 and 4 are plotted at the average

dates of the refreshes in the plan.

 Figures 3 and 4 clearly demonstrate the effect of

introducing constraints to the design refresh planning process.

The increase in the number of refresh plans from 17 to 58 is due

to the additional production events that were added to

implement the “Strong B” backfits. Figure 4 shows that many

refresh design plans can be created; however, once temporal

constraints that reflect system constraints are applied only a few

plans remain viable, i.e., satisfy all the constraints. In this case,

18 plans ranging from two to four refreshes per plan are viable

out of a total of 58 plans. The violating plans are crossed out.

The least expensive viable plan has two refreshes at 2007 and

2015 (triangle data point), which is circled in Fig. 4. For

comparison, the best refresh plan circled in Fig. 4 is also circled

in both Fig. 3 and Fig. 5. Note, the best plan without constraints

applied is the zero refresh plan.

 So far, the case study has assumed that there are no

uncertainties associated with the data describing the system.

The case study analysis is performed assuming that all dates in

Tab. 2 are the mean of normal distributions (µ*), all with a

standard deviation of one year (σ*).

 The uncertainty analysis method used does not require that

the uncertainty inputs be represented as normal distributions

(or a symmetric distribution) – normal distributions were

chosen for convenience. After running 1000 samples, the results

revealed that the best (i.e., non-violating and least expensive)

plan found by deterministic methods is not the best plan (i.e.,

minimized probability of failure and life cycle cost) when input

uncertainty is present.

 Looking at Fig. 5, the horizontal-axis is the mean

probability of failure, which stays constant throughout time

assuming the date distribution parameters (e.g., µ*, σ*) do not

change. The vertical-axis is the life cycle cost of the system for

each refresh plan; however, unlike the previous figures, in Fig.

5 and 6 the vertical-axis is the mean life cycle cost. Figure 6

shows the nine refresh plans from Fig. 5 with a 10% or less

probability of failure. Note, no plans have 0% probability of

failure (i.e., 100% probability of satisfying all the constraints

when uncertainties are considered). Since both life cycle cost

and design refresh plan probability of failure should be

minimized, this becomes a multi-objective problem where the

grouping of refresh plans creates a Pareto frontier.

 A weighted sum method can determine a best solution;

however, the life cycle cost can be related to design refresh plan

probability of failure to make a single objective.

 If the cost of violating a constraint could be determined,

then it would allow an expected cost value for each plan to be

09E+06

10E+06

11E+06

12E+06

13E+06

14E+06

15E+06

16E+06

17E+06

18E+06

0 20 40 60 80 100

Mean Probability of Failure (%)

L
if

e
 C

y
c

le
 C

o
s
t

M
e

a
n

 (
$
) 0 Refresh

1 Refresh

2 Refresh

3 Refresh

4 Refresh

Figure 5. MOCA GENERATED REFRESH PLANS WITH THE APPLICATION
OF STATISTICAL PARAMETERS ACCOUNTING FOR UNCERTAINTY.

14E+06

15E+06

16E+06

0 5 10 15 20

Mean Probability of Failure (%)

L
if

e
 C

y
c

le
 C

o
s

t
M

e
a

n
 (

$
) 0 Refresh

1 Refresh

2 Refresh

3 Refresh

4 Refresh

Figure 6. MOCA GENERATED REFRESH PLANS WITH APPLICATION OF
STATISTICAL PARAMETERS ACCOUNTING FOR UNCERTAINTY.

09E+06

10E+06

11E+06

12E+06

13E+06

14E+06

15E+06

16E+06

17E+06

18E+06

2005 2010 2015 2020

Mean of Refresh Dates in the Plans

L
if

e
 C

y
c

le
 C

o
s
t

M
e

a
n

 (
$
) 0 Refresh

1 Refresh

2 Refresh

3 Refresh

4 Refresh

Figure 3. MOCA GENERATED REFRESH PLAN WITH NO CONSTRAINTS
APPLIED.

09E+06

10E+06

11E+06

12E+06

13E+06

14E+06

15E+06

16E+06

17E+06

18E+06

2005 2010 2015 2020

Mean of Refresh Dates in the Plans

L
if

e
 C

y
c

le
 C

o
s

t
M

e
a

n
 (

$
) 0 Refresh

1 Refresh

2 Refresh

3 Refresh

4 Refresh

Figure 4. MOCA GENERATED REFRESH PLAN WITH A DETERMINISTIC
APPLICATION OF THE GENERATED CONSTRAINTS. THE CROSSED-
OUT POINTS DO NOT SATISY ONE OR MORE OF THE CONSTRAINTS.

 11 Copyright © 2011 by ASME

calculated, which would allow the minimization of the expected

life cycle cost. The design refresh plan with the lowest expected

life cycle value would be the best plan.

 Uncertainty allows us to be more risk seeking rather than

adverse so as to consider refresh plans that have less than 100%

probability of satisfying all constraints, which we would

otherwise dismiss.

DISCUSSION
 This paper describes the obsolescence problem for

sustainment-dominated systems and focuses on modeling

constraints within the DRP methodology. A constraint taxonomy

is presented that is used to classify constraints based on whether

the constraint is based on an organization (that is sustaining a

system) has the permission or ability to perform a design

refresh.

 A detailed treatment of temporal constraints was presented

including an algorithm used to generate temporal constraints

using obsolescence event type definitions to identify what

sustainment activities are affected by a component’s

obsolescence event.

 Finally, a case study was presented to demonstrate the

effect constraints have on the best solution to a design refresh

planning problem. The main idea presented in this paper is that

the addition of constraints to the DRP methodology is necessary

and its effect on the results is significant.

 Future work will be to refine the input uncertainty portion

of the DRP methodology to include penalty costs due to various

scheduling infractions such as a design refresh completing later

than scheduled.

ACKNOWLEDGEMENT
 The authors acknowledge the National Science Foundation

(Division of Design and Manufacturing Innovation) Grant Nos.

CMMI 928628, 928837 and 928530 for their support. The

authors would also like to thank the more than 100 companies

and organizations that support research activities at the Center

for Advanced Life Cycle Engineering at the University of

Maryland annually.

REFERENCES

 [1] Sandborn, P., 2008. “Trapped on technology’s trailing

edge”. IEEE Spectrum, 45(1) pp. 42-45.

[2] Fine, C., 1998. Clockspeed: Winning industry control in

the age of temporary advantage. Perseus Books, Reading,

MA.

[3] Pecht, M., and Tiku, S., 2006. “Bogus! Electronic

manufacturing and consumers confront a rising tide of

counterfeit electronics”. IEEE Spectrum 43 pp. 37-46.

[4] Sandborn, P., and Myers, J., 2008. “Designing

Engineering Systems for Sustainment”. In Handbook of

Performability Engineering, K. Misra, ed., Springer,

London, pp. 81-103.

[5] Tomczykowski, W., 2003. A study on component

obsolescence mitigation strategies and their impact on

R&M, Proceedings Series, Annual Reliability and

Maintainability Symposium (RAMS), Tampa, FL, pp.

332-338.

[6] Stogdill, R., 1999. “Dealing with obsolete parts”. IEEE

Design and Test of Computers, 16 pp. 17-25.

[7] Solomon, R., Sandborn, P., and Pecht, M., 2000.

“Electronic part life cycle concepts and obsolescence

forecasting”. IEEE Transactions on Components and

Packaging Technologies 23 pp. 707-713.

[8] Josias, C., and Terpenny, J., 2004. Component

obsolescence risk assessment, Proceedings Series,

Industrial Engineering Research Conference (IERC).

 [9] Sandborn, P., Prabhakar, V., and Ahmad, O., 2011.

“Forecasting technology procurement lifetimes for use in

managing DMSMS obsolescence”. Microelectronics

Reliability 51 pp. 392-399.

[10] Directive 2002/95/EC of the European Parliament and of

the Council, of 27 January 2003.

[11] ANSI/EIA-724. 1997. Product Life Cycle Data Model.

[12] Singh, P., and Sandborn, P., 2006. “Obsolescence driven

design refresh planning for sustainment-dominated

systems”. The Engineering Economist 51 pp. 115-139.

