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ABSTRACT 

Long life cycle products, commonly found in aviation, 

medical and critical infrastructure applications, are often fielded 

and supported for long periods of time (20 years or more). The 

manufacture and support of long life cycle products rely on the 

availability of suitable parts, which over long periods of time, 

leaves the parts susceptible to supply chain disruptions such as 

suppliers exiting the market, allocation issues, counterfeit part risks, 

and part obsolescence.  

Proactive mitigation strategies exist that can reduce the impact 

of supply chain disruptions. One solution to mitigating the supply 

chain risk is the strategic formulation of part sourcing strategies 

(optimally selecting one or more suppliers from which to purchase 

parts over the life of the part’s use within a product or organization).  

Strategic sourcing offers a way of avoiding the risk of part 

unavailability (and its associated penalties), but at the expense of 

qualification and support costs for multiple suppliers. An 

alternative disruption mitigation strategy is hoarding. Hoarding 

involves stocking enough parts in inventory to satisfy the 

forecasted part demand (for both manufacturing and maintenance 

requirements) of a fixed future time period. This excess inventory 

provides a buffer that reduces the effect of supply chain disruptions 

on the part total cost of ownership (TCO), but increases the total 

holding cost. 

This paper presents a method of performing tradeoff analyses 

and identifying the optimal combination of second sourcing and 

hoarding for a specific part and product scenario. A case study was 

performed to examine the effects of hoarding on both single and 

second sourced parts. The case study results show that hoarding 

can contribute to a decrease in the cumulative TCO and a decrease 

in its variance. 

 

Keywords: Total cost of ownership, hoarding, part sourcing, 
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NOMENCLATURE 

∆CTCO Difference in cumulative Total Cost of Ownership of a 

part  

CASYj Assembly Cost for a part in year j  

CFFj Field Use Cost for a part in year j 

CINVj Holding (Inventory) Cost without Disruptions for a part 

in year j 

CPROCj Procurement Cost for a part in year j 

CSUPj Cost to Support a Source for a part in year j  

CTCO Cumulative Total Cost of Ownership of a part  

H  Hoarding Quantity 

h Holding Cost (per part per year) 

I  Number of Parts in Inventory 

IE Excess Inventory (positive values of I) 

K Ratio of ∆CTCO /CSUP 

m Forecasted Part Demand (per year) 

PB Base Penalty Cost (per part per year) 

PBO Backorder Penalty Cost (per year) 

r Discount Rate 

S/E Shortage/Excess on Backorder Quantity 

TCO Part Total Cost of Ownership 

TH Hoarding Duration 

YB Base Year for Money 
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1 INTRODUCTION 

Products can be categorized into long life cycle and short life 

cycle products. Popular consumer electronics, such as computers, 

mobile phones, GPS (global positioning systems), etc., have 

relatively short lives and are replaced with newer products within 

a few years of their market introduction (usually 5 years or less). 

Long life cycle products, such as those used in aerospace, military, 

communications infrastructure, power plants, and medical 

applications, are manufactured and remain in use for significantly 

longer (often 20 years or more). Long life cycle products, because 

of their relatively low volume requirements, often do not control 

their own supply chains1 and must draw their parts from the same 

supply chain as high-volume products. Electronic parts are a good 

example where all products, regardless of their market, must draw 

parts from the same supply chain; the outcome is a relatively high 

frequency of involuntary part obsolescence [1]. As a result, the 

assessment and management of parts used in long life cycle 

electronic products differs significantly from their short life cycle 

counterparts. 

Analyses of optimal sourcing strategies for parts (e.g., split 

award auctions, etc., [2]) are common in the business management 

and operations research literature, however, the existing analyses 

are generally part procurement-price centric.  For low-volume, 

long field life systems, the cost of ownership of parts is not driven 

by their procurement price [3], so split award auctions and similar 

approaches have little applicability for this type of product.  Part 

“hoarding” – a type of dynamic inventory policy, violates the basic 

tenants of lean manufacturing culture that seek to reduce the need 

for holding and managing large inventories of parts.  However, lean 

manufacturing assumes that suppliers that can provide parts for the 

manufacturing process dependably and without interruption [4], 

which is often not the case with electronic parts over long time 

periods.  Disruptions in supply can be extremely problematic for 

low-volume long life systems that depend on electronic parts when 

lean manufacturing approaches are used.2 

 Due to varying part demand throughout the life cycle of a 

product or group of products, part hoarding (as presented in this 

paper) is inherently a dynamic inventory policy. Various dynamic 

inventory policies and models have been presented in previous 

works. Karlin [5] introduced a variable inventory model based on 

a fluctuating demand distribution. Karlin’s model incorporates 

backlogged demand and its associated penalty cost, but the 

uncertainty of supply chain disruption is not considered. The model 

is based on defined periods of equal duration, at the beginnings of 

which ordering decisions are made. Any time lags between order 

and delivery within the model are assumed to correspond to these 

                                                         
1 In cases were long-life cycle products do have some control over the 

supply chain, decision making is complex. The TCO of each part has to be 

carefully considered when selecting part suppliers. 
2  Of course disruptions are also a problem when lean manufacturing 
approaches are used for high-volume products, but in the case of high-

volume products, disruptions are usually relatively short in duration (e.g., 

hours or days), whereas in the case of low-volume, long field life products, 

disruptions due to allocation issues and obsolescence may have durations 
of months (possibly years). 

pre-determined periods (i.e., a lag lasts a certain number of periods 

and the parts are delivered at the beginning of a period). Karlin only 

presents a model for a lag lasting one period. Supplier disruptions 

are inherently uncertain (when they occur and how long they last 

are uncertain), and as such a dynamic inventory policy that reflects 

this fact is necessary. Zipkin [6] developed a simplified version of 

Karlin’s model. Zipkin’s model assumes that each period is 

stationary and uncertainty only comes into play when the periods 

are combined. Iyer and Schrage [7] focused on the importance of 

collecting historical demand data to generate inventory control 

parameters; however they presented only a deterministic model.  

Disruption overlap and uncertainties in disruption date and 

duration are key factors in the model discussed in this paper. In 

addition, the authors are not aware of any existing work that treats 

the effect of part hoarding on second sourcing.  

The method presented in this paper builds upon the existing 

total cost of ownership (TCO) model developed by Prabhakar and 

Sandborn [3]. The model developed in [3] indicated that that the 

money spent on part and supplier qualification (categorized as 

“support costs”) are the largest contributors to an electronic part’s 

TCO in low-volume, long life cycle products; in high-volume 

products, these support costs would be distributed over higher 

volumes. The model in [8] incorporated the effect of sourcing 

decisions and showed that when procurement and holding costs are 

small contributions to the part’s TCO, the cost of qualifying and 

supporting a second source outweighs the benefits of extending the 

part’s effective procurement life through second sourcing.  

This paper combines a simplified part total cost of ownership 

model based on the model in [3] with an inventory/backorder 

model and a cost penalty model to explore the optimum 

combination of second sourcing and hoarding. 

2 PART TOTAL COST OF OWNERSHIP (TCO) WITH 
SECOND SOURCING  

The model developed by Prabhakar and Sandborn [3] 

determines the part total cost of ownership. The basic model 

developed in [3]3 for calculating the effective cumulative total cost 

of ownership through year i for a part4 is given in Eq. 1, 

 

𝐶𝑇𝐶𝑂𝑖
= ∑ ( 𝐶𝑆𝑈𝑃𝑗

+ 𝐶𝐴𝑆𝑌𝑗
+ 𝐶𝑃𝑅𝑂𝐶𝑗

+ 𝐶𝐹𝐹𝑗
+ 𝐶𝐼𝑁𝑉𝑗

)𝑖
𝑗=1

 Eq.1 

  

The model employs an annual (end-of-year) review policy in terms 

of inventory replenishment decision-making. For a detailed 

explanation of the terms in Eq. 1, see [3]. 

3 In [3], procurement cost was included in the assembly cost. For the 

purpose of clarity, procurement and assembly costs were separated in this 

paper.  
4 In actuality, the costs in Eq. 1 are per part site, where a part site is the 
location of a part within a product that could be occupied by one or more 

instances of the part during the support life of the product.  For example, 

if the part fails and is replaced by a spare part, the cost of the spare is 

included in the cost of the part site.   



 

  3 Copyright © 2013 by ASME 

 

The decision to second source a part (instead of single 

sourcing) is based on the tradeoff between the benefit of extending 

the effective procurement life of the part by second sourcing and 

the additional cost of qualifying and supporting the second source. 

In Prabhakar and Sandborn [9] the additional cost to support a 

second source is modeled using a learning index and the model 

developed provides a means to determine the “break-even” 

learning index required to make a second sourcing strategy viable. 

The approach in [9] addresses long-term (non-recurring) supply 

chain disruptions and specifically focuses on disruptions due to 

part obsolescence.  

The case study in [9] showed that the benefit of using a second 

sourcing strategy is dependent on the value of the ratio K = 

∆CTCO/CSUP where ∆CTCO is the difference in total cost of 

ownership (i.e., the cost avoided by extending the part’s 

procurement life) and CSUP is the cost to support a source. K can be 

used to calculate the effective learning index associated with 

sourcing (see [9]).  According to [9], the ratio K can be interpreted 

from two perspectives: 1) as a threshold, K serves as an indicator 

for the organization’s capability to stream-line qualification and 

support activities for additional suppliers, and 2) as a target, K can 

be used to estimate the maximum fraction of support cost that can 

be duplicated for the second source and still make second sourcing 

viable. 

This paper utilizes the ratio, K, to assess the value of 

proactively qualifying a second source and/or hoarding an 

inventory of parts to address the issue of recurring supplier-specific 

part lead time events. The case study presented in Section 4 utilizes 

a second sourcing condition of K = 1, or the complete duplication 

of support costs, in order to provide a conservative cost estimate.  

Prabhakar and Sandborn [9] show that the primary factors 

contributing to conditions that favor second sourcing is high 

holding cost (per part per year). As modeled in [9], the 

accumulation of high inventory/holding costs over time is further 

exacerbated for parts with short procurement lives.   

3 PART TOTAL COST OF OWNERSHIP (TCO) WITH 
DISRUPTIONS 

This section discusses the incorporation of hoarding 

mitigation strategies and backorder penalties into an existing part 

TCO model. The modified model concurrently analyzes the effect 

of both second sourcing (as discussed by Prabhakar and Sandborn 

[8]) and hoarding on the part TCO so that companies are able to 

select the most effective management strategy for their specific 

needs. 

The part TCO model, as presented in [3], calculates the part 

total cost of ownership from the following inputs: part price, part 

demand (forecasted and actual), support costs, and supplier 

(sourcing) information. The model in [3] determines the solution 

to the idealized case: no supplier disruption.  

The backorder penalty model presented in this paper is the 

next step in the process as it takes the final output (the part TCO) 

Figure 1: Structure of the total cost of ownership (TCO) model 

Figure 2: Backorder counting for one year (assuming constant rate of demand, m) 
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from the original model and incorporates uncertainties (part 

demand and supplier) and hoarding. Supplier disruptions and part 

demand uncertainty incur penalty costs (as we will discuss in 

Section 3.3), which can significantly impact the TCO. The final 

output of the two steps, as shown in Figure 1, is the sum of the 

original part TCO without penalty and the penalty costs. This final 

value is considered the part total cost of ownership (TCO). 

3.1  PART HOARDING 

When the qualification and support costs associated with 

multiple suppliers negate the benefits of second sourcing, other 

mitigation methods can be considered. Additional mitigation 

methods can supplement the existing sourcing strategy, or replace 

it. Part hoarding involves stocking a number of parts in the 

inventory equal to the forecasted part demand of a fixed future time 

period (e.g., hoard three months’ worth of part demand).  The 

forecasted demand may represent the quantity needed for 

manufacturing and the quantity of spares needed to maintain 

fielded systems (or satisfy warranty requirements). The excess 

inventory provides a buffer that lessens the effect of supply chain 

disruptions on the part total cost of ownership (TCO), but increases 

the total holding cost. When a supply-chain disruption occurs, the 

flow of incoming parts ceases and the company begins to draw 

from their stock of hoarded parts. The presence of hoarded parts in 

the inventory allows the company to operate as normal for a fixed 

period of time (determined by the chosen hoarding strategy). If the 

disruption duration exceeds the predetermined hoarding duration 

(TH), then the demand is queued and backordered. The backorder 

quantity at the end of the disruption, shown in Figure 2, invokes a 

penalty cost (see Section 3.3). 

3.2  CALCULATION OF HOARDING QUANITITY 

The method presented in this paper utilizes end-of-year 

backorder counting. This method assumes that the part total cost of 

ownership for year i is the cost accumulated between year i and 

year i+1.  

As mentioned in the introduction to this section, the hoarding 

strategy in this paper is defined by the forecasted demand of a fixed 

future time period. Due to the fact that this demand changes 

throughout the life cycle of the part, the hoarding quantity is not a 

pre-determined value. Instead, the hoarding quantity changes from 

year to year.  

If the hoarding duration (TH, in months) is less than a year, the 

hoarding quantity for each year (i) within the part’s life cycle (with 

the exception of the final year of support, when no hoarding is 

necessary) is given by: 

𝐻𝑖 = 𝑚𝑖 (
𝑇𝐻

12
)  Eq.2  

If the hoarding duration is greater than a year, then the 

hoarding quantity for each year (i) is given by: 

                                                         
5 A lead time event is defined as a period of time during which parts are 
not being delivered (primarily due to supplier disruption) 

𝐻𝑖 = ∑ 𝑚𝑘
𝑖−1
𝑘=1 + 𝑚𝑖 (

𝑇𝐻

12
) Eq.3 

Equations 2 and 3 implicitly assume that the forecasted part 

demand (m, in parts/year), while varying from year to year, is 

consumed at a constant rate within any given year. The uncertainty 

associated with of the forecasted part demand impacts the total 

penalty cost, as discussed in Section 3.3.  

When a supplier disruption occurs, new parts are no longer 

being delivered and the production and support begins to rely on 

the hoarded inventory. However, if the disruption extends past the 

hoarding duration, parts are backordered with an additional penalty 

cost. The number of parts on backorder at the end of the disruption 

period is considered the backorder quantity. 

3.3 CALCULATION OF THE BACKORDER PENALTY 
COST  

One of the major consequences of supplier/production 

disruption is the accumulation of penalty cost. Whenever demand 

is not met, a penalty is charged. If disruptions are frequent and/or 

lengthy or there is a high base penalty cost the cumulative TCO can 

be dramatically affected. The hoarding strategy can be optimized 

so as to balance the holding cost associated with excess parts 

against the possible penalty cost.  

In the model presented in this paper, annual backorder penalty 

(𝑃𝐵𝑂𝑖
) in year i was calculated using: 

 𝑃𝐵𝑂𝑖
=

𝑃𝐵𝐼𝑖
∗

(1+𝑟)(𝑖−𝑌𝐵) Eq.4 

where r is the discount rate on money and YB is the associated base 

year for money.  Equation 4 incorporates the uncertainty of part 

demand within the function Ii*, which is defined as the maximum 

of the following three values: 0, the shortage/excess on backorder 

quantity (S/Ei), and the parts in inventory (Ii). This function 

essentially selects the population (due to lead time/disruption or 

demand uncertainty) affected by the base penalty cost (PB). The 

parts in inventory (Ii) are defined within the model as the total 

number of parts available for production/support at the end of the 

year, typically as a result of demand uncertainty. A negative 

quantity indicates a shortage of parts while a positive quantity 

indicates excess inventory. If there is excess inventory (IE) at the 

end of the year, a holding cost (h) is charged per part instead of a 

backorder penalty cost (as excess inventory inherently indicates 

that no parts are on backorder). 

 The shortage/excess on backorder quantity is defined as the 

number of parts that are unavailable for production/support during 

a lead time event5 - a negative quantity indicates a shortage of parts. 

This excess/shortage is essentially the error due to part demand and 

disruption uncertainty. For the first year of a supplier disruption, 

this value is calculated by: 

                                     𝑆/𝐸𝑖 = 𝐻𝑖 − 𝑚𝑖𝐷𝑖  Eq.5 
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where Di is the annual downtime. If the disruption extends past one 

year, the shortage/excess on backorder quantity is quantified for all 

subsequent years by: 

                                      𝑆/𝐸𝑖 = 𝐼𝑖 − 𝑚𝑖𝐷𝑖 Eq.6 

 The sum of the annual backorder penalty cost and the holding 

cost on excess parts are added to the part cost of ownership (as 

calculated in [9] using Eq. 1) to produce the annual part TCO.  

3.4 CALCULATION OF PART TOTAL COST OF 
OWNERSHIP (TCO) WITH DISRUPTIONS 

 As discussed previously, the part total cost of ownership 

model presented in this paper expands upon the capabilities of the 

cost model presented in [9] by incorporating hoarding and 

backorder penalty cost. The output of the model in [9], the part total 

cost of ownership without disruptions, effectively serves as the 

baseline annual cost. 

 Uncertainty is introduced into the model through the 

generation of random supplier disruptions. The disruptions are 

modeled using a three-parameter Weibull distribution (which was 

selected for generality, but could be replaced with any other 

distribution) defined by user-supplied parameters. The penalty cost 

associated with these disruptions is then calculated using Eq. 4. The 

user-selected hoarding strategy, discussed and calculated in 

Section 3.2, comes into play within the calculation of the penalty 

cost.  

 The final annual part TCO (Eq. 7) is estimated by adding the 

penalty cost (associated with the supplier disruptions) and the 

holding cost associated with excess inventory (due to the hoarding 

policy selected and part demand uncertainty) to the baseline annual 

part TCO calculated using [9]. The CINVj term from Eq. 1 was 

replaced with ℎ𝐼𝐸𝑗
 in Eq. 7 in order to reflect the inventory 

counting method detailed in Section 3.3. Note that in years where 

holding cost (h) is charged, there are no parts on backorder (and 

vice versa). 
  

    𝐶𝑇𝐶𝑂𝑖
= ∑ (𝐶𝑆𝑈𝑃𝑗

+ 𝐶𝐴𝑆𝑌𝑗
+ 𝐶𝑃𝑅𝑂𝐶𝑗

+ 𝐶𝐹𝐹𝑗
+ 𝑃𝐵𝑂𝑗

+ ℎ𝐼𝐸𝑗
)𝑖

𝑗=1  

  Eq.7 
 

 To accommodate the uncertainties in the analysis, the model 

is implemented within a Monte Carlo analysis. The final output of 

the model, as shown in the case study in Section 4, is a distribution 

of the likely cumulative TCO per part site over the support life of 

the product (or family of products) for the mitigation strategies in 

question. 

4 CASE STUDY 

The existing model [8], discussed in Section 2, utilizes both 

forecasted demand and associated part costs (support, 

procurement/inventory, assembly, and field use) to calculate the 

part TCO for both single and second sourcing. This section 

describes a case study performed using the modified part TCO 

model (Eq. 7) developed in Section 3. All the data used for the 

example case in this section is provided in the Appendix. The 

inputs were chosen to mimic the real-world costs associated with 

an ISDN transformer. However, it should be noted that while the 

data was carefully selected to produce realistic populations and 

results, the inputs do not represent true historical data. Each figure 

shows the results of a Monte Carlo analysis (100 simulated runs) 

that was employed to include the impact of uncertainty on the part 

TCO. 

The purpose of the hoarding strategy is to delay the negative 

effects associated with supplier disruption. In other words, part 

hoarding allows production to continue during a supplier 

disruption. This extension of the available production period 

reduces the penalty cost associated with unfulfilled demand. Figure 

3 shows the impact of a 20-week hoarding strategy on the available 

inventory over the 20 year support life of the product considered in 

this example. The most important trait to notice in Figure 3 is the 

difference between the number of parts on backorder (which, when 

non-zero indicate a disruption period) and the number of needed 

parts in the inventory (negative inventory). In the case shown in 

Figure 3, the peak amount of negative inventory within each 

disruption period is less than the peak number of parts on backorder 

due to the hoarding. Hoarding creates a gap between the start of the 

disruption and the point when production (or the ability to support 

the product) stops (due to negative inventory) that allows for 

shorter overall downtime or possibly no downtime at all.  

 
Figure 3: Part quantities over a 20-year period (full part life-cycle). 

A 20-week hoarding strategy was employed.   This figure shows the 

results for one sample from the population. 

 

The effect of the decreased downtime due to hoarding on the 

cumulative TCO of the part is shown in Figure 4. Figure 4 shows a 

comparison of cumulative TCO for a given part assuming no 

hoarding. A K value of 1 (see Section 2) was assumed in order to 

demonstrate the worst case of second sourcing, i.e., complete 

duplication of support costs. Second sourcing decreases the mean 

cost (from $47.47 to $35.55); however a large spread in possible 

values exists. This spread, i.e., uncertainty, is major source of risk 

for a company.  
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Figure 4: A comparison of the probable cumulative TCO for two 

sourcing strategies (without any hoarding) for the given inputs. 

The effect of hoarding, on both single and second sourcing 

strategies, is shown in Figure 5. The incorporation of a 20-week 

hoarding strategy further diminished the mean cumulative TCO 

when compared to the non-hoarding cases in Figure 3. Also, by 

reducing the effect of supplier downtime, the spread of the possible 

TCO was significantly decreased for both sourcing strategies. For 

the second sourcing case with no hoarding (shown in Figure 4), the 

standard deviation was $10.70. When a 20-week hoarding policy 

was incorporated in Figure 5, the standard deviation was reduced 

to $6.67. 

 

 
Figure 5: A comparison of the probable cumulative TCO for the 

two sourcing strategies considered in Figure 3 after the 

incorporation of a 20-week hoarding strategy.  

While the implementation of hoarding as a mitigation strategy 

was effective under the given set of conditions (see the Appendix 

for the assumed conditions), hoarding may not always reduce the 

part TCO. For example, as shown in Figure 6, if the holding cost 

(per part per year) associated with excess inventory is large then 

hoarding would only serve to increase part TCO.  

 
Figure 6: A comparison of the probable cumulative TCO for second 

sourcing with and without hoarding given a holding cost of $200 per 

part per year. 

The graph in Figure 6 was generated with the same inputs used 

in the case study with one notable exception: the holding cost per 

part per year was increased from $0.05 to $200. While this increase 

in holding cost is unrealistically large, for the given set of 

conditions in this example, a 20-week hoarding effectively reduced 

the mean part TCO up to this level of holding cost. 

5 DISCUSSION AND CONCLUSIONS 

This paper presents a method to compare proactive mitigating 

strategies, sourcing and hoarding in particular, that provide the 

means to reduce the effect of disruptions in the supply chain of long 

life cycle products. As seen in the case study results, the most 

effective management plan may not be a single mitigating strategy. 

Instead, a combination of both second sourcing and hoarding has 

been shown to decrease the mean cumulative TCO.  

Hoarding, in and of itself, provides several benefits when it 

comes to mitigating supplier disruption. In particular, the inventory 

buffer resulting from hoarding reduces the impact of supplier 

disruption by decreasing its effective duration. Hoarding is also an 

effective mitigation strategy when there is a large penalty cost 

associated with backorders (as mentioned in Section 3.2) as the 

added holding cost is outweighed by the possible penalties.  The 

conditions under which hoarding is a viable mitigation alternative 

are application specific and, in the example case discussed in this 

paper, specific to low-volume, long manufacturing and support life 

products. 
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The calculation of backorder penalties associated with part 

demand uncertainty and supplier disruption is another important 

aspect of the part total cost of ownership model. Forecasted part 

demand is typically idealized, and the model presented in this paper 

accommodates the consequences of any discrepancy between 

forecasted and actual demand. In addition, the same backorder 

penalty model can be applied to backorder parts (unmet demand).  

In the case study, the incorporation of concurrent proactive 

mitigation strategies and backorder penalty cost calculations was 

shown to dramatically affect the part total cost of ownership. 

A potentially interesting issue that is highly dependent on 

sourcing and hoarding is the optimal design reuse of parts within 

multiple products.  When parts are reused, supply chain disruptions 

can quickly offset savings due to part commonality depending on 

the availability of finite resources to resolve problems on multiple 

products concurrently.  This issue has been addressed in [10], but 

it has not been treated in the context of sourcing and hoarding 

optimization.   
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8    APPENDIX - Case Study Inputs 

This appendix contains all the inputs used to generate the case 

study in Section 4.  Some of the following inputs populate the 

models described in [3] and [9], which have not been reproduced 

in this paper. 

 
Table 1: Inputs for the Part TCO model discussed in Section 2. The 

highlighted values are also used in the backorder penalty model presented 
in this paper. The initial part price and price change per year were modeled 

for an ISDN transformer. The remaining values were used in the original 

Part TCO model [3]. 

Ratio, K 1 

Effective Procurement Life (years) 20 

Discount Rate on Money (r) 10% 

Base Year for Money (YB) 0 

Lifetime Buy Overbuy (fraction of 

demand) 10% 

Holding (Inventory) Cost (per part per 

year) $0.05 

Initial Part Price (all suppliers) $0.39 

Price Change (per year) +8.5% 

Product Support Life (years) 20 
 

Table 2: Support Cost Inputs. Inputs that were combined and analyzed 

in the Part TCO model as discussed in Section 2 and detailed in [3].  

Product-Specific Approval $200 

Initial Approval 0 

Annual Part Data Management $200 

Annual Production Support $600 

Annual Purchasing $400 

Obsolescence Case Resolution $7,500 

PSL Qualification $10,000 

 

Table 3: Input variables used to generate sample demand populations. 

The highlighted values were combined using a Weibull function to 

generate the forecasted part demand values shown in Table 4 (generated 

before analysis and held constant throughout the Monte Carlo analysis). 
These parameters were selected in order to produce a population that 

closely mimics that of an ISDN transformer (with peak demand occurring 

in year 3 of production). The final variable, demand uncertainty, defines 

the accuracy associated with the forecasted part demand. A random 
Gaussian function, which combines this uncertainty and the annual 

forecasted part demand, is employed to generate actual annual demand 

values for each Monte Carlo run. 

Total Part Volume 9,000 

Shape 1.5 

Scale (years) 7 

Demand Uncertainty6 0.25 
 

 

                                                         
6 Demand uncertainty is expressed in terms of standard deviation from the 

annual quantity. 

Table 4: Annual demand inputs (held constant throughout analysis). 

The number of product designs indicates how many products utilize the 
part in question each year. If a new product was introduced, a product-

specific approval cost, from Table 2, was added to the annual TCO (as 

discussed in [3]). The forecasted part demand was generated using a 

Weibull function and the parameters in Table 3. 

Year 
Product 

Designs 

Forecasted 

Part Demand 

(Mean) 

1 1 691 

2 1 885 

3 2 954 

4 2 946 

5 2 891 

6 2 807 

7 2 709 

8 2 608 

9 2 509 

10 2 418 

11 2 337 

12 2 268 

13 2 209 

14 2 161 

15 2 123 

16 1 92 

17 1 68 

18 1 50 

19 0 36 

20 0 26 
 

Table 5: Additional Inputs. The base penalty cost (BP) was a direct input 

for the model discussed in Section 3.2 while the hoarding duration (TH) 
was utilized, as shown in Section 3.1, to generate the annual hoarding 

quantity (H). The number of sample runs indicates the number of 

simulations that were run to generate Figures. 3-6.  

Base Penalty Cost, BP (per part per year) $300  

Hoarding Durations, TH (weeks) 0, 20 

Sample Runs (Monte Carlo analysis) 100 
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Table 6: Sourcing Specific Inputs. The following values were utilized 

to generate (via a three-parameter Weibull function) the supplier 
disruptions for each Monte Carlo run. 7

 

                                                         
7  Single sourcing used only Supplier X, second sourcing used both 
Supplier X and Y. 

Location (time) Shape Scale (time) Location (time) Shape Scale (time)

Interval (years) 5 1 0.5 5 1 0.5

Length (weeks) 52 1 0.6 52 1 0.6

Part Procurement Life (years) 20 0 0 20 0 0

Analysis Run-in Time (years) 25 0 0 -- -- --

Supplier X Supplier Y


