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ABSTRACT 

Obsolescence of human skills impacts the support of long 
field life systems. Human skills obsolescence is a growing 
problem for organizations as they try to estimate and mitigate 
the effects of an aging workforce with specialized (and possibly 
irreplaceable) skill sets. Difficulties with skills obsolescence 
have been reported in a number of industries including industrial 
controls, aerospace, and military systems, all product sectors that 
must support critical systems for 20-30 years or longer.   

Common workforce planning models do not generally 
address the obsolescence of skills. Rather, they implicitly 
assume lost human resources are always replenishable.  Nearly 
all of the existing research associated with the obsolescence of 
skills focuses on the opposite of the problem addressed in this 
paper, i.e., workers have skills that are obsolete and therefore 
need to be retrained in order to be employable.  Alternatively, 
this paper addresses the lack of workers with the necessary skill 
set and the inability to replace them.  This paper describes a 
model for the obsolescence of skills and skilled worker retention. 
This research provides a way to quantitatively address the 
problem of skills obsolescence and provides a basis upon which 
to estimate the cost of future system support. 
 
Keywords: Maintenance, experience, resources, hiring rate, 
obsolescence, DMSMS, workforce planning  

1 INTRODUCTION 

Manufacturing and support organizations wish to have a 
secure skill pool that allows for full functionality and efficiency; 
however in reality the skill pool, skill level and the number of 
available employees tends to fluctuate, requiring careful 
management and forecasting to ensure that overall support is not 
disrupted or delayed. There are many types of mission, safety 
and infrastructure critical systems that have very long field 
support lives. Examples include military systems, industrial and 
transportation control systems, and communications 
infrastructure.  Technology and part obsolescence are common 

problems faced by these systems [1], e.g., the inability to 
procure spare parts to maintain the systems.  This problem is 
commonly referred to as Diminishing Manufacturing Sources 
and Material Shortages (DMSMS).  Obsolescence, however, is 
not solely a hardware problem; it also impacts software [2] and 
the human skills necessary to maintain long field life systems. 
Human skills obsolescence is a growing problem for 
organizations that must support mission, safety and 
infrastructure critical systems as they try to estimate and mitigate 
the effects of an aging work-force with specialized (and possibly 
irreplaceable) skill sets. In the context of human skills, 
“obsolescence” implies that the replenishment of skills is not 
possible or partial at best. If the skills are replenishable, multiple 
new hires may be needed to reproduce the level of work of each 
experienced employee that leaves the organization.  

The motivation behind the research described in this paper 
was the age distribution of engineers supporting a legacy control 
system used in the chemical and material production industry. 
The mean age of employees is currently 56 and increasing as it 
has been difficult to retain new people to support the legacy 
system as younger employees relocate to other sectors and job 
opportunities that they perceive as having better long-term job 
prospects.1 Similar difficulties have been reported in a number of 
industries including the Healthcare Industry [3] and other 
enterprises [4]. The problem is particularly relevant with 
organizations that must support critical systems for long periods 
of time, e.g., 20-30 years or longer (so called sustainment-
dominated systems, [5-6]). With many employees approaching 
the average retirement age, a general hiring rate model for 
replacement and a human support risk cost-model was needed to 
assess the severity of the problem. The situation posed a major 
question for the company, how will the obsolescence of skills 
and the possible inability to replace these skills affect the cost of 
supporting the legacy system for another 10-20 years? 

                                                           
1 This paper does not address the particular reasons that the retention of younger 
engineers is insufficient to replenish the current skills pool. 
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The majority of past research in skill obsolescence 
addresses the opposite problem wherein workers’ skills are no 
longer useful or become outdated as a result of automation and 
the rapid growth in technology (e.g., [7-11]). These works deal 
with ways to mitigate skill “decay” over time for a given 
workforce.  

In this paper, we define “worker obsolescence” to mean that 
workers’ skills are no longer useful while “skill obsolescence” 
refers to workers who have particular skills that are lost as those 
workers die, retire or leave the organization. Although it is a 
common problem, very little existing work is focused on the 
most able workers being the oldest (in our particular case) and 
the most valuable. The analytical techniques presented by 
Bohlander and Snell [12] modeled a similar situation, however, 
they do not include the attrition or the costs associated with the 
varying availability of the workers.  Bordoloi [13] developed a 
model for workers that are at different skill levels entering and 
exiting a company; additionally, the rate at which the employer 
gains and loses employees is also taken into account in their 
planning model.  However, Bordoloi [13] stops short of 
estimating the experience in the pool as a function of time and 
thereby determining the impact that skills obsolescence has on 
the support of systems.  Huang et al. [14] developed a planning 
model using a computer simulation where the goal was to 
determine an ideal hiring rate based on the different levels of 
skill that workers had. Although this model uses workforce 
simulation and calculates an ideal hiring rate, this model does 
not account for the costs incurred by the availability of workers 
in their determination of an ideal hiring rate.  

Holt [15] points out that the traditional understanding of a 
workforce has been in terms of the “physical sum of people 
employed,” which is the basis for most common workforce 
planning models.  A more useful approach is to observe workers 
in an organization as assets with varying skill levels.  Holt [15] 
defines human capital investment as the “total amount and 
quality of talent, knowledge, expertise, and training that these 
workers possess.” Holt [15] minimizes cost while maintaining 
balanced levels of human capital. However,  the model is based 
on categorizing workers by “classes” wherein all workers in a 
class share similar attributes. The Holt model also lacks aging 
and age-related effects of individual workers over time.  

This paper is concerned with the variation of the cumulative 
skill pool and its relation to cost as a function of time. The 
training of new workers takes time, incurs costs, and there is no 
guarantee that the workers will not be lost before they are 
completely trained. The ultimate questions that need to be 
answered are “what will today’s skills pool look like after ‘x’ 
years?” and “what impact will the skills pool have on my ability 
to continue to support a system?”  The model described in this 
paper offers a projection for the future and a way to quantify 
cumulative experience versus the influx of new workers and 
their departures.   

The next section describes the development of the human 
skills replenishment model.  This is followed by a case study 
from the chemical manufacturing industry. 

2 ESTIMATION OF THE HUMAN SKILLS POOL AND 
THE REPLENISHMENT OF EXPERIENCE 

The model presented in this paper estimates the number of 
skilled employees (pool size) and the combined (cumulative) 
experience of the skills pool in order to determine the resources 
that will be available to maintain a long life cycle legacy system 
or family of systems. The cumulative experience of the skills 
pool impacts the time (and thereby the cost) to perform the 
necessary maintenance activities to sustain a system.2 In order to 
assess pool size and experience, we have to track (or forward 
calculate) the experience of the people in the pool over time 
based on when they were hired while accounting for age related 
loss. In this section, a human skills replenishment model is 
developed to determine the cumulative experience in the skills 
pool as a function of time and a fixed hiring rate.  We also 
determine the required hiring rate over time in order to preserve 
a constant cumulative experience throughout a specified system 
support life.  

The level of experience within the skills pool varies over 
time and can be determined from the following: 1) new hires 
added to the skills pool, 2) attrition rate or loss of skilled 
employees due to job changes, promotions, retirement, etc., and 
3) accounting for the varying skill levels of the people in the 
pool. 

Initially, we assume that the organization’s policy dictates 
the hiring rate, H, resulting in a varying skills pool that can be 
modeled over time. Since the data (see Section 3) is only 
available on an annual basis, we utilize discrete time steps, i, of 
1 year throughout these analyses; however, i can be any arbitrary 
unit of time. Let H be the new hires per year as a fraction of the 
pool size at the start of the analysis period (i = 0). Let fC be the 
probability distribution function (PDF) of age for the current 
skills pool, fH be the PDF of age for new hires, and fL be the PDF 
of age for people exiting the pool (attrition). Then, Ni(a) is the 
net frequency of people in the pool of age a during year i, given 
by,  
 

     afaHfaNaN LHii   1)1()( 1  (1) 

 
where, i is the number of years from the start of the analysis 
period. Note that at i = 0,  afaN C)(0  corresponding to the 

current distribution of worker age in the skills pool. Therefore, 
the cumulative net frequency3 of people in the skills pool, NNET%, 
in year i is given by,  
 

                                                           
2 The time to perform maintenance to support a system is a significant cost driver 
for availability-centric systems.  Availability is the ability of a service or a 
system to be functional when it is requested for use or operation and is 
determined by the combination of reliability and maintainability.  For many 
systems, the cost of unavailability is very large, e.g., high-volume 
manufacturing, airlines, medical devices, etc.  
3 We use the term “net frequency” because NNET% (i) can be greater than 1. This 
can occur when the number of new hires exceeds the number of people exiting 
the pool. 
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where, r is retirement age and y is the age of the youngest 
employee in the skills pool. The age of the youngest worker, y, 
corresponds to the age of the youngest worker at the start of the 
analysis period (from fC) or the youngest worker that is hired 
during the analysis period (from fH). This model assumes that a 
mandatory retirement age, r, exists. Early retirement along with 
other reasons for loss in skilled employees are assumed to be 
captured in the PDF for attrition, fL. Conversely, the PDF of 
retention, fR for the skills pool can be estimated annually by, 
fR(a) = 1 – fL(a). 

Estimating the size of the pool over time is necessary but 
not sufficient to capture the ability to support a system into the 
future because not all workers in the pool have an equivalent 
level of experience and therefore an equivalent level of “value” 
to sustaining the system.  The following analysis estimates 
cumulative experience in order to track the true value of the pool 
of skilled workers where “experience” is the length of time that a 
worker has spent in a particular position. The cumulative 
experience of the pool in year i, Ei, can be calculated using,  
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where, RE = ratio of experience to age.  Note, “experience” is an 
arbitrary unit of time. Ei is only used in the model to determine 
the change in cumulative experience from the initial condition. 
In the analyses and case study that follows, experience is 
measured in “years”. 

The cumulative experience of the pool in year i as a 
percentage of the current pool experience, E0 can be calculated 
as, 
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Using the cumulative experience, the time to perform 

maintenance in year i is given by, 
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where, mT0 is the time to perform maintenance with a skills pool 

having E0 experience at time i = 0.  Equation (5) can be used to 
predict the time to perform maintenance and thereby the cost of 
maintenance as a function of years into the future (see Section 
3.1).  The time increase modeled in (5) is due to several factors: 
1) less experienced workers may simply require more time to 
perform the task (learning curve effects), and/or 2) the number 

of workers who can perform the required maintenance activity is 
smaller, so they may not (for example) be available at every site, 
i.e., they may have to be flown in from a different location. 

All of the development so far assumes a fixed hiring rate 
that may or may not be sufficient to maintain the current level of 
experience.  Finally, the model can be used to estimate the hiring 
rate required to maintain the current level of experience over the 
system’s support life. The required hiring rate (assuming hiring 
is possible) in year i, Hi, can be calculated as, 
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subject to the constraint, 
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The next section presents an example case study that uses 

the methodology presented in this section.  

3 CASE STUDY 

This section presents a case study that implements the 
model developed in Section 2 with data from a chemical product 
manufacturing organization. The PDF of age for the current 
skills pool, fC, is shown in Figure 1. The PDF of hiring age is 
shown in Figure 2. The PDF of age when workers exit the pool 
is shown in Figure 3. Weibull distributions representing fC, fH, 
and fL are generated from data using the Maximum Likelihood 
Estimation (MLE) method. Fits using other distributions such as 
Gaussian, Beta, and Log-normal could also be considered based 
on tests for “goodness-of-fit” with respect to the available data. 
This analysis assumes that the distributions for fH and fL are 
static for the entire analysis period. The mandatory retirement 
age, r, is assumed to be 60 years at which workers are required 
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Figure 1 – Frequency for the age of workers in the current 
skills pool and the corresponding Weibull (2 parameter) 

PDF, fC. 
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to leave the skills pool.  
Figure 4 shows NNET%, the net pool size (number of 

workers), over time as a fraction of the pool size at year 0. This 
example assumes a fixed 4% hiring rate, H, annually. Based on 
the assumed attrition rate and hiring rate, the skills pool is 
expected to decrease for 16 years to a minimum of 66% of the 
current pool size. The net pool size reaches a theoretical “steady 
state” of 84% after 38 years (i.e., hiring rate and attrition rate no 
longer cause the size of the pool to change). “Steady state” 
occurs because age distributions for both new hires and attrition 
(fH and fL) are static. The effect is a balance between an influx of 
new hires and loss due to attrition that begins when all 
employees in the current pool have passed the age of retirement 
(after year 38).  

Figure 4 only partially describes the effect of the assumed 
hiring rate. A more accurate representation of the value of the 
skills pool is to assess the cumulative experience, E%.  To assess 
cumulative experience we need an estimate of RE (the 
experience/age ratio).  Data for employee age and experience are 
used to determine ratio, RE, as a function of age, a, is shown in 

Figure 5.  Using (3) and (4), Figure 6 shows that the combined 
loss in employees to retirement and attrition over the first 17 
years causes a decrease in cumulative experience to nearly 43% 
of the current value. This example case assumes that the 
maximum experience that can be achieved by any employee is 
20 years (i.e., the employee’s value no longer increases beyond 
20 years). This assumption is based on evidence that indicates 
the time taken to perform all related tasks does not decrease 
further for skilled workers with more than 20 years of 
experience for this case study; however, this assumption is not 
required for the methodology in this paper to be performed.    

3.1 SKILLS OBSOLESCENCE IMPACT ON COST 

To provide some context for the results developed in this 
example, Figure 7 shows the annual cost of supporting a legacy 
control system from the chemical and material production 
industry through year 2029 (over 2000 instances of the system 
require support in this case).  The cost model used is a stochastic 
discrete event simulator that samples time-to-failure 
distributions for the components of the control system to obtain 
maintenance events (event dates and components that need 
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Figure 2 – Frequency for annual hiring age and its corresponding 
Weibull (2 parameter) PDF, fH. 
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Figure 3 – Weibull (3 parameter) PDF for age when 

workers exit the pool, fL. 
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Figure 4 – Annual net pool size (as percentage of current 
pool size), NNET%. 
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Figure 5 – Ratio, RE, with respect to age, a.  A curve fit of 
RE(a) using a 2nd degree polynomial is given in the plot. 
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replacement).  While the details of the cost model are beyond the 
scope of this paper, when a maintenance event occurs, the cost 
of performing the necessary maintenance action is modeled 
using,  
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where the term in brackets is the maintenance time from (5), 

p
iC is the cost of replacement part (if a replacement is needed) 

in the ith year and  l
iC is the cost of labor in the ith year.  Both 

p
iC and l

iC are discounted to the ith year and p
iC may include 

holding (inventory) costs if the part is obsolete in year i and was 
obtained in a lifetime buy at an earlier time. 

Three results are shown in Figure 7.  The figure shows that 
there is little effect of skill obsolescence prior to 2020, but after 
that the impact of the loss of skills becomes significant.  Note, in 
year 2025 the availability of spares (hardware) also becomes a 
problem resulting in the step shown between years 2024 and 
2025. The lowest curve in Figure 7 assumes that there is no 

human obsolescence (
i

E%  = 100 for all i in (8)).  Even in this 

case, the annual cost increases due to part obsolescence that 
results in lifetime buys of parts that tie up significant capital in 
pre-purchased parts and long-term holding costs.  The middle 
curve assumes the level of human skills obsolescence assumed 
by the data in this case study with a 4% annual hiring rate (H = 
0.04 for all i).   As the results indicate, a 4% annual hiring rate 
(if possible) is not sufficient to mitigate the loss of skills and 
results in a nearly $40M/year cost by increases 2030.  The final 
case (highest cost curve) shown in Figure 7 assumes that no 
replenishment of lost skills is possible. 

3.2 REQUIRED HIRING RATE 

Assuming the lost skills are replenishable, we now wish to 
estimate the future hiring rate, Hi, required to preserve the 
current level of experience, E0, in the skills pool. The analysis 
identifies a solution4 for the system of equations (the objective 
function in (6) is subject to the constraint in (7)) to determine the 
annual hiring rate, Hi, needed to replenish the loss in cumulative 
experience as a result of attrition and retirement. The estimation 
of the required hiring rate can be performed at any point during 
the analysis or as frequently as needed to replenish the skills 
pool and maintain the desired experience level. For this example, 
the operation is repeated periodically at 1 year time steps until 
the end of the analysis period (end of the system’s support life). 
Figure 8 shows results for hiring rate, Hi, as a function of the 
number of years from the start of the analysis. Figure 8 shows 
that a hiring rate of over 15% is required for the first 7 years and 

                                                           
4 The analysis implements the “goal seek” toolbox in MS Excel to solve for 
hiring rate, Hi. The goal seek function follows an iterative process to identify 
values that satisfy the required target conditions. The operation was observed to 
converge to the target value (E% = 100%) with less than 0.1% uncertainty. 
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Figure 6 – Cumulative experience of the pool (as percentage 
of current pool experience), E%. 
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Figure 7 – Annual cost of supporting a legacy control system 
with and without skills obsolescence. 
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Figure 8 – Hiring rate over time, Hi, required to preserve the 
current cumulative experience.  
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over 4% until year 13.  The results in Figure 8 also show that the 
hiring rate becomes negative between year 16 and year 19. This 
occurs since the current solution process calculates Hi 
periodically utilizing information from previous time steps only. 
In order to satisfy the constraint in (7) and maintain the level of 
experience, E%, at 100%, the required hiring rate prior to year 16 
causes E% to overshoot 100%. This effect can only be 
counteracted by voluntarily reducing the pool size. Relaxing the 
constraint to maintain a minimum level of experience (rather 
than a fixed level of experience) can eliminate the need to 
voluntarily reduce the pool size; this method also allows 
flexibility when hiring rate is constrained.   

4 SUMMARY AND DISCUSSION 

The exigent nature of the skills obsolescence problem is that 
organizations may encounter this dilemma and without existing 
models that produce information in terms of cost impacts, the 
organization may struggle to move forward.  Restated, the 
workforce planning problem that many organizations are facing 
is ensuring that they have the right number of people, with the 
right skills sets, in the right jobs, at the right time. 

To address this problem, a model for the loss of critical 
skills necessary to support legacy systems has been developed.  
The model estimates the number of skilled employees (pool size) 
and the combined (cumulative) experience of the skills pool in 
order to determine the resources that will be available to 
maintain a long life cycle legacy system or family of systems. 
The cumulative experience of the skills pool impacts the time 
(and thereby the cost) to perform the necessary maintenance 
activities to sustain a system. 

The model presented has only been used to assess support 
(maintenance) costs, but it could also be used to directly assess 
system availability as well (for systems subject to availability 
contracts such as performance-based logistics contracts, e.g., 
[16]). 

Several simplifying assumptions have been made in the 
model described in this paper. 5   We have assumed the age 
distributions of new hires and of workers exiting the pool are the 
same for the entire analysis period –these distributions may 
change over time.  In our solution we have also assumed that 
everyone entering the pool has no experience – this may not be 
the case; some workers could enter the pool with relevant 
experience gained from other positions.  Our solution also 
assumes that the only way workers gain experience is through 
years on the job.  There may be other methods that can 
accelerate the rate at which workers become more experienced, 
e.g., knowledge bases created to capture the experience of older 
workers.  A discrete time analysis is presented in this paper 
because the available data only exists on an annual basis, 
however, a continuous time solution could also be developed. 

                                                           
5 Although the model is based on historical distributions of the hiring age, exit 
age, and current age of workers in the pool, the model assumes that these 
distributions will remain the same over time.  Performing uncertainty analysis 
would involve allowing these distributions to change over time, i.e., trending the 
distributions over time. 
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