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Abstract: Technology obsolescence also known as diminishing manufacturing 
sources and material shortages (DMSMS) is a significant problem for  
systems whose operational life is much longer than the procurement lifetimes 
of their constitute components. The most severely affected systems are 
sustainment-dominated, which means their long-term sustainment (lifecycle) 
costs significantly exceed the procurement cost of the system. Unlike  
high-volume commercial products, these sustainment-dominated systems may 
require design refreshes to simply remain manufacturable and supportable. 
Design refresh planning (DRP) is a strategic method for reducing the lifecycle 
cost impact of DMSMS and increasing system availability. The objective of 
DRP is to determine when a design refresh should occur (or what the frequency 
of refreshes should be) and how to manage the system components that are 
obsolete or soon to be obsolete at the design refreshes. This paper describes the 
formulation and implementation of constraints in the DRP process for systems 
impacted by DMSMS type obsolescence and proposes a method of 
transforming an implicit system limitation into an explicit DRP constraint. 
These constraints can reflect technology roadmap requirements, obsolescence 
management realities, logistics limitations, budget limitations and management 
policy. 
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to perform optimised refresh planning for systems subject to technology 
obsolescence. He also performs research in several other lifecycle cost 
modelling areas including maintenance planning and return on investment 
analysis for the application of prognostics and health management (PHM) to 
systems, total cost of ownership of electronic parts, transition from tin-lead to 
lead-free electronics, and general technology trade-off analysis for electronic 
systems. 

 

1 Introduction 

Technology obsolescence is defined as the loss or impending loss of original 
manufacturers of items or suppliers of items or raw materials (Sandborn, 2008). The type 
of obsolescence addressed in this paper is referred to as diminishing manufacturing 
sources and material shortages (DMSMS) and is caused by the unavailability of 
technologies or components that are needed to manufacture or sustain a product. In this 
paper, ‘component’ refers to the lowest management level possible for the system being 
analysed. In some systems, the ‘components’ are laptop computers, operating systems, 
and cables; while in other systems the components are integrated circuits (chips). 
DMSMS means that due to the length of the system’s manufacturing and support life, 
coupled with unforeseen support life extensions, needed components become unavailable 
(or at least unavailable from their original manufacturer) before the system’s demand for 
them is exhausted.1 Component unavailability from the original manufacturer means an 
end of production and/or support for the component. Components may become obsolete 
for a variety of reasons that include: the introduction of newer replacement components, 
dwindling market share, corporate acquisitions and mergers, changes in legislation, and 
the disruption of supply chains due to natural disasters and other causes.2 It is possible for 
aftermarket suppliers to continue to sell a component after obsolescence; however, not all 
components are available in the aftermarket and buying components in the aftermarket is 
expensive and introduces additional risks that may be unacceptable for many types of 
systems, e.g., counterfeit risk (Pecht and Tiku, 2006). 

The DMSMS type obsolescence problem is especially prevalent in  
‘sustainment-dominated’ systems where the cost of sustaining (maintaining) the system 
over its support life far exceeds the cost of manufacturing or procuring the system 
(Sandborn and Myers, 2008). Sustainment in this paper refers to three things: keeping the 
system operational, continuing to manufacture and install versions of the original system 
that satisfy the original requirements, and finally the ability to manufacture and install 
versions of the original system that satisfy new and evolving requirements. Examples of 
sustainment-dominated systems include airplanes, military systems, telecommunications 
infrastructure, and other infrastructure-, safety- and mission- critical systems. These types 
of systems are produced at low volumes compared to commercial products such as 
personal computers or cell phones, which means that they have little to no control over 
their supply chains. They also have long enough design cycles that a significant portion 
of the technology in them may be obsolete prior to the system being fielded for the first 
time. Once in the field, their operational support can be 30 years or more 
(Tomczykowski, 2003). For these systems, simply replacing obsolete components with 
newer components is often not a viable solution because of high reengineering costs and 
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the prohibitive cost of system re-qualification and re-certification. For example, if an 
electronic component in the 25-year-old control system of a nuclear power plant fails, an 
instance of the original component may have to be used to replace it so as to not 
jeopardise the ‘grandfathered’ certification of the plant. 

The escalating impact of DMSMS type obsolescence on systems has resulted in the 
development of a growing number of methodologies, databases and tools that address the 
obsolescence status of components, forecast future obsolescence risk and provide 
DMSMS mitigation and management support. 

The effective long-term management of DMSMS in systems requires addressing the 
problem on three different management levels: reactive, pro-active and strategic. The 
reactive management level is concerned with determining an appropriate, immediate 
resolution to the problem of components becoming obsolete, executing the resolution 
process and documenting/tracking the actions taken. Common reactive DMSMS 
management approaches include: lifetime buy, bridge buy, component replacement, 
buying from aftermarket sources, up rating, emulation, and salvage (Stogdill, 1999). For 
example, lifetime buy refers to buying enough components from the original 
manufacturer prior to the component’s discontinuance to support all forecasted future 
manufacturing and support needs, and bridge buy means buying a sufficient number of 
components to reach a pre-determined future date when the component will be designed 
out of the system. 

Pro-active management means that critical components that: 

a have a risk of going obsolete 

b lack sufficient available quantity after obsolescence 

c will be problematic to manage if/when they become obsolete 

are identified and managed prior to their actual obsolescence event. 
Pro-active management requires an ability to forecast obsolescence risk for 

components. It also requires that there be a process for articulating, reviewing and 
updating the system-level DMSMS status. 

Strategic management of DMSMS means using DMSMS data, logistics management 
inputs, technology forecasting, and business trending to enable strategic planning, 
lifecycle optimisation, and long-term business case development for the support of 
systems. The most common approach to DMSMS strategic management is design refresh 
planning (DRP), which consists of choosing the best mix of reactive management 
approaches such as bridge buys, and design refreshes. A design refresh is a change to the 
system that is required in order for the system to remain sustainable. 

This paper describes the formulation and handling of constraints in the DRP process 
for systems impacted by DMSMS type obsolescence. In the next section, the DRP 
methodology is briefly reviewed followed by proposal description of a method used to 
transform implicit system limitations into explicit constraints for the DRP process. An 
algorithm used to construct the constraints is provided and demonstrated on an example 
electronic system DRP problem. 
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2 Design refresh planning 

The objective of DRP is to determine when design refreshes should occur so that the 
lifecycle costs (LCCs) of the system are minimised. The simplest DRP solutions calculate 
the net present value (NPV) of bridge buys and design refreshes as a function of the date 
of the design refresh. As a design refresh is delayed, its NPV decreases and the quantity 
(and thereby cost) of bridge buys required to sustain the system until the design refresh 
takes place increases (Cattani and Souza, 2003; Porter, 1998). 

Value is usually gained from the DRP models through the identification of cost 
avoidance opportunities (opportunities to avoid future sustainment costs) associated with 
optimal planning of refreshes (optimal set of refresh dates or the optimal frequency to 
refresh a system); optimal mixing of reactive DMSMS mitigation solutions with design 
refreshes, or by identifying refresh points early enough that appropriate budgets and 
resources can be put in place. 

Figure 1 Flow diagram of a DRP process showing the required input data and the resulting output 
(a design refresh plan) that has the lowest associated cost compared to all feasible 
design refresh plans evaluated 
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Figure 1 identifies the inputs and outputs of the DRP process. The four main inputs to the 
DRP process are the bill of materials (BOM) of the system being managed, the forecasted 
obsolescence dates for the components in the BOM, the future demand for the system 
being produced and sustained, and the reactive management plan. The system BOM 
contains component-specific information such as component quantity and cost.3 The 
BOM is also the input to a procurement life forecasting method, the output of which is 
obsolescence dates for all the components in the BOM. The forecasted obsolescence 
dates are then input into the DRP process. The remaining input to the DRP process is the 
reactive management plan that details how reactive management approaches will be used 
between design refreshes. The DRP process then calculates a LCC for various 
combinations of design refresh dates and selects the design refresh plan that has the 
lowest associated LCC. 

The DRP problem can be formulated as shown in equation (1). 

minimise ( , )

subject to: ( , ) 0; 1, ,k

f x p
x

g x p k K≤ = …
 (1) 

The objective function, ( , )f x p  calculates the LCC for the system being modelled. The 
LCC objective function is dependent on 1[ , , ],rx x x= …  which is the design variable 
vector, and 1[ , , ],mp p p= …  which is the set of parameters. The design variable is a 
vector of zero or more design refresh dates representing one design refresh plan. The 
parameters used in the LCC objective function are constants that do not change during 
the DRP process such as the production schedule, forecast obsolescence dates, costs for 
different DRP activities. Since the values used in the design variable vector and the set of 
parameters represent monetary and quantitative amounts, x  and p  are restricted to real 
values. 

The LCC objective function is shown in equation (2) (Singh and Sandborn, 2006). 

1 1

( , )
1 1

100 100

i j

n r
ji i i i

d d
i j

NREQ C c qf x p
R R= =

+
= +

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑  (2) 

where 

Qi quantity of systems to be manufactured at the ith manufacturing event to satisfy 
demand 

qi quantity of spare components to be manufactured at the ith manufacturing event 
to satisfy demand 

Ci recurring cost of manufacturing a system instance at the ith manufacturing event 

ci recurring cost of manufacturing a spare component instance at the ith 
manufacturing event 

NREj non-recurring cost of the jth design refresh 

n number of manufacturing events 
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r number of design refreshes in the plan 

R after tax discount rate on money 

d difference in years between event date and the NPV calculation date. 

Notice that in equation (2) there are sub-functions that are dependent on the design 
variable vector, x  such as the non-recurring cost, NREj function that gives the  
non-recurring cost of the jth design refresh, xj. In addition, the parameter set p  contains 
all of the constants shown in equation (2) such as the discount rate, R. 

The ( , )f x p  LCC objective function, which is a representation of the DRP 
methodology has the design variable x  and parameter set p  as its inputs; however, the 
DRP methodology goes through many intermediate variables in order to calculate a  
LCC. An example of an intermediate variable is an annual design refresh cost variable 
(i.e., the amount of money that was spent on all design refreshes within a particular year).  
While not part of the design variable, these intermediate variables may have  
constraints placed on them. For example, let there be an annual budget constraint  
that imposes a million dollar upper bound limit on the annual design refresh cost in  
year t of the analysis period. The annual budget constraint would then be represented  
as ( , ) ( , , ) 1,000,000 0.g x p c x p t= − ≤  Taking constraints imposed on intermediate 
variables and deriving them in terms of the design variable is not possible for all cases. 

Constraints imposed in the DRP process can reflect legislative policies, budget 
realities, technology upgrade roadmaps, logistic limitations, and obsolescence 
management limitations (Nelson et al., 2011). For the approach presented in this paper 
the constraints can be characterised by three general types: budgetary, logistical, and 
temporal. For example, a budgetary constraint may place an upper bound on the money 
available to perform design refreshes or other management activities in a particular 
period of time as in the example above. A logistical constraint would restrict the number 
of components that can be stored for lifetime buys, or limit the number of facilities 
performing design refreshes (e.g., a finite number of dry docks for ships). Temporal 
constraints will require the design refresh activity to complete within a specific period of 
time for technology insertion to upgrade a system’s capability, or may preclude specific 
periods of time for design refresh because the system to be refreshed is unavailable (e.g., 
a submarine is gone for 12 months and the design refresh cannot be performed at sea). It 
should be noted that since the design variable in the DRP process is a list of design 
refresh dates, the temporal constraints do not require any kind of modification whereas 
the budget and resource constraints do require a transformation into a constraint that is in 
terms of the design variable (i.e., design refresh dates). This paper will focus on temporal 
constraints and specifically their application to electronic systems. For the DMSMS 
affected systems, temporal constraints are the most prevalent DRP drivers. 

Temporal constraints usually take the form of inclusive4 inequalities because they 
represent ranges of time when at least one design refresh is required. These constraints 
are typically centred on events such as obsolescence events, legislation enactment events, 
changes in standards event, etc., because a large majority of system limitations are 
focused on mitigating the impacts of those events. 

The creation of a temporal constraint for a given system is achieved by understanding 
how the limitations of a system relate to the system’s components within the perspective 
of the DRP process managing a sustainment-dominated system. Essentially, system 
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limitations need to be transformed into an explicit form that can be directly imposed on 
the DRP design variable. 

The task of translating system limitations into explicit constraints is challenging when 
limitations are implicit such as when the limitations are in the form of a policy. A policy 
provides generalised information on how a system is restricted. For example, an 
electronic data security policy might state “No software is allowed to operate without 
security patch support from the OEM software company”. In deciphering this policy, the 
first step is to identify the component being restricted by this limitation, which could be 
any and all software within the system. The second step is determining how this 
limitation restricts the scheduling of a design refresh. When viewing this policy through a 
DRP process perspective, it is clear that the policy does not explicitly state how it will 
restrict the scheduling of design refreshes; however, it does reveal three pieces of 
information that can be used to form the constraint: 

1 the component obsolescence occurs when the ‘support’ for the software expires 

2 the constraint is permission-based (i.e., ‘is allowed’ refers to the consent from an 
authoritative actor ‘to operate’ if certain conditions are met) meaning the 
obsolescence event of a component does not affect the functionality of the system; 
however, other risks, vulnerabilities, and penalties might be incurred if the constraint 
is not met 

3 the constraint affects the operation of the system, which means the production of the 
system is also affected by the constraint. 

The electronic data security policy example has been broken down into elements that can 
be used to form the explicit DRP constraint; but before forming the constraint a brief 
review of some terms is necessary. 

Recalling the definition of sustainment-dominated mentioned earlier, the main 
activities of sustaining a system are ensuring the continued operation and production of a 
system. These two activities are governed by whether the organisation responsible for 
sustaining the system has the ability and/or the permission to perform such activities. The 
ability to perform an activity is based on physical parameters such as the available funds, 
resources, and time. Permission to perform an activity is based on the authorisation from 
imposed written law, supervisory actors (e.g., company management, business owner), 
applicable national/international standards and specifications, and contractual 
commitments. 

Next, the form of the temporal constraint will be determined. It was mentioned before 
that the budgetary and logistical constraints require a transformation such that the 
constraint is in terms of the design variable whereas the temporal constraints do not. 
Budgetary and logistical constraints usually take the form of thresholds and those 
thresholds are known at the beginning of the DRP process. Temporal constraints are 
usually bounded ranges of time that require one or more design refresh activities to 
complete within them; however, those bounds are unknown at the beginning of the DRP 
process. In order to determine the temporal constraint bounds, it needs to be established 
whether according to the limitation if the component’s obsolescence event the constraint: 

1 affects both the operation and the production of the system 

2 affects production and not operation 

3 does not affect either activity. 
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It will be assumed that if the component’s obsolescence event affects the operation of the 
system then the production of the system is also affected. Knowing how the component’s 
obsolescence event according to the limitation affects the operation and production of a 
system will determine if and how an explicit constraint will be constructed. The three 
possible situations called obsolescence event types have been identified, their definitions 
follow. 

In the following obsolescence event type definitions, the term obsolete can take on 
several meanings depending on the component restricted by the limitations. If the 
component is a piece of hardware, obsolete generally means you cannot procure the item 
from the original manufacturer; however, in some cases the item may remain available 
from your existing inventory or through aftermarket sources. If the component is a single 
legal copy of software, obsolete usually means you cannot receive software updates such 
as service packages or security patches. 

2.1 ‘Weak’ obsolescence event 

No change to previously fielded (installed) systems or systems to be manufactured in the 
future is required. As long as the obsolete item is available (from existing stock or 
aftermarket sources), new systems can be manufactured and fielded using it and 
previously installed systems can be repaired with it if necessary. 

System limitations often identify hardware (electronic components for our 
applications) as having a Weak obsolescence event. The rationale behind this is that if 
hardware goes obsolete there is no reason to change it as long as you have access to a 
sufficient supply of the obsolete component to satisfy manufacturing and support 
requirements. 

2.2 ‘Strong A’ obsolescence event 

Fielded (installed) systems can continue to operate with the obsolete item and can be 
replaced with the obsolete item if it needs replacement due to a failure of the item. 
However, new systems to be manufactured in the future cannot be built and fielded with 
the obsolete item (whether the obsolete item is available or not). 

A recent example of a system limitation that resulted in an organisation identifying a 
component’s obsolescence event as ‘Strong A’ was caused by the European legislation 
called the restriction of hazardous substances (RoHS) Directive (Directive 2002/95/EC, 
2003). This legislation regulates many of the commonly used substances in electronics 
and restricts the use of several materials deemed hazardous by the European Union (EU). 
The most problematic material for electronic systems is lead, which historically is a 
primary ingredient in solder. The legislation only pertains to electronic systems sold in 
the EU after July 1, 2006 so any previously fielded systems with non-compliant 
electronic components are allowed to continue operating; however, new instances of the 
system to be manufactured and sold in the EU must comply with the RoHS directive by 
ensuring that every component and subsystem is RoHS compliant regardless of the 
availability of non-compliant components. 
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2.3 ‘Strong B’ obsolescence event 

Fielded (installed) systems are not allowed to continue to operate with the obsolete item 
and must be backfitted within a defined time period. New systems cannot be built and 
fielded with the obsolete item (whether the obsolete item is available or not). 

An example of a system limitation that identifies a component’s obsolescence event 
as ‘Strong B’ is an electronic data security policy. Consider a ship-board communication 
system that has computers on its network that is connected to the public web running a 
commercial operating system that is about to reach its end of support date (the effective 
obsolescence date for the software), which means the end of security patches and the 
potential for a security risk if not updated or replaced. In this example the operating 
system is the component. To maintain its security integrity the ship communications 
network manager puts in place a policy that the computers cannot continue to operate 
with the obsolete operating system, so any installed systems with the obsolete operating 
system will have to be back fitted and any new instances of the system will have to be 
delivered with a non-obsolete operating system. 

A backfit consists of a refresh of the fielded version(s) of the system. The number of 
implementations of the backfit refresh is determined by reviewing all fielded versions of 
the system and accumulating appropriate quantities of affected system elements. 

The next section explains the process of taking the information discovered about the 
system limitation and forming explicit DRP constraints. 

3 Constraint synthesis algorithm and implementation 

Every component instance that is in a ‘Strong’ obsolescence event category will be 
examined because only the ‘Strong’ obsolescence events result in modification of the 
DRP process. It is important to note that the obsolescence event types are not dependent 
on the component, but rather the relationship between the component and where it is 
located in the system (i.e., the component’s context). A system limitation may not specify 
an exact component but rather a specific effect a component’s obsolescence event has on 
the system. The same component could appear in multiple locations within a system and 
generate a different constraint in each case; therefore, every component must be 
examined in a system even if it is not unique. 

The following is an algorithm that generates (synthesises) temporal constraints. The 
numerical values, such as those that pertain to dates, can include uncertainties in this 
algorithm. This is important especially since the input uncertainty is often large for DRP 
problems (uncertainty will be addressed in Section 4). 

3.1 Step 1: create initial constraint 

In order to build temporal constraints for components that are identified as causing a 
‘Strong’ obsolescence event we need to determine the constraint start date (CS) and the 
constraint end date (CE), which form the constraint period. The constraint start date is 
calculated by subtracting the look-ahead time (LAT) from the forecasted date of 
obsolescence (DO). LAT is the amount of time the refresh plan ‘looks-ahead’ from the 
completion of a design refresh for forecasted component obsolescence issues and  
pro-actively removes components that are forecasted to have obsolescence. 
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S OC D LAT= −  (3) 

With the constraint start date known, the first of a pair of explicit constraints can be 
written as: 

1( ) 0Sg x C x= − ≤  (4) 

The constraint end date (CE) depends on the type of ‘Strong’ obsolescence event. In the 
case of a ‘Strong A’ obsolescence event the constraint end date is the next date of 
production (DP) also called a production event, i.e., the next date when the component is 
needed to support the system (manufacturing or sparing). A production event includes all 
the activities that result in the creation of a system instance or the replenishment of 
spares. The amount of time between the CS and CE consists of two periods: the  
LAT and the ‘waiting time’ (WT). The ‘WT’ is specific only to ‘Strong A’ constraints and 
is the time the component is allowed to remain obsolete within the current system design 
after which a design refresh must occur. This secondary period of time is called ‘WT’ 
because the component is ‘waiting’ for a design refresh after it has gone obsolete. The 
LAT and waiting time durations are defined by equations (3) and (5) respectively, 

E O P OWT C D D D= − = −  (5) 

where, the production event date (DP) is the date of the first production event following 
the obsolescence event (DO), so DP > DO is assumed. If there is no future production 
event date following the ‘Strong A’ obsolescence event, then no constraint will be created 
due to the fact that ‘Strong A’ components can continue to operate in installed systems 
indefinitely. 

In the case of ‘Strong B’ obsolescence event types, an immediate design refresh 
corresponding to the obsolescence event is required. Just like the ‘Strong A’ constraints, 
‘Strong B’ constraints have a period of time before the obsolescence event called the LAT 
and equation (3) can be used to find the constraint start date (CS). Unlike ‘Strong A’ 
constraints, ‘Strong B’ constraints do not have a ‘waiting time’ because by definition they 
require an immediate design refresh, so the constraint end date (CE) is the same as the 
obsolescence date (DO), (i.e., CE = DO). The biggest difference between ‘Strong B’ and 
‘Strong A’ constraints is that ‘Strong B’ constraints require a backfit (i.e., a design 
refresh) for all fielded systems that are affected by the obsolescence of the ‘Strong B’ 
component. With the constraint end date known, the second of a pair of explicit 
constraints can be written as: 

2 ( ) 0Eg x x C= − ≤  (6) 

The g1 and g2 explicit constraints are evaluated as a pair and share a common design 
refresh date. 

The cost of the backfit process can be broken into two parts: the backfit development 
cost (a non-recurring cost) and the backfit implementation cost (a recurring cost for each 
fielded system instance). To implement the backfit, a production date that is the same 
date of the ‘Strong B’ obsolescence date (DP = DO) is inserted into the production 
schedule. Similar to a production event that produces new instances of the system, this 
inserted production event has a production quantity that is the number of affected, fielded 
system instances; however, in this context it is implementing backfits rather than creating 
new system instances. This inserted production event (i.e., backfit implementation event) 
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is seen as any other production event, except when it comes to creating ‘Strong A’ 
constraints. 

3.2 Step 2: creation of component replacements and their constraints 

In many cases the procurement lifetimes of electronic components are significantly 
shorter than the manufacturing and support lives of sustainment-dominated systems, 
therefore, a component’s replacement (introduced at a design refresh) may also go 
obsolete before the end of the system’s support life. This means that additional 
constraints associated with the synthesised replacement of a component need to be 
created. 

This step does three things: creates a replacement for the predecessor component that 
went obsolete; determines the replacement’s obsolescence date; and if the replacement’s 
obsolescence event is before the end of support date of the system, synthesises additional 
constraints. 

In order to determine whether the replacement component will go obsolete within the 
analysis period, the obsolescence date of the replacement component must be estimated. 
The three pieces of information needed to calculate the replacement component’s 
obsolescence date are the procurement lifetime (Sandborn et al., 2010), the lifecycle code 
of the replacement component, and the obsolescence date of the predecessor component. 
For simplicity, assume that the procurement lifetime, the length of time the component 
can be procured from its original manufacturer, of the replacement component is the 
same as the predecessor component. Next, the lifecycle code of the replacement 
component is selected. Depending on the application (i.e., risk tolerance for the adoption 
of new components) different component maturities could be targeted. A component’s 
maturity is defined by where it is on its lifecycle curve at a specific point in time 
(Electronic Industries Alliance, 1997). The lifecycle curve is divided into regions that 
reflect the rate of a component’s maturity that correspond to the following lifecycle 
codes: 1 = emerging, 2 = growth, 3 = maturity, 4 = decline, 5 = phase out, 6 = obsolete. 
Sustainment-dominated systems are usually extremely risk adverse and may only select 
components that have lifecycle codes of 2 or 3 (whereas a high-volume commercial 
application might choose components with lifecycle codes of 1 because their success 
depends on being state-of-the-art). With the procurement lifetime and lifecycle code 
selected, the obsolescence date for the replacement component can be calculated. The 
following equation is used to calculate the obsolescence date of the replacement 
component, 

o R
o pc

o I

I ID D L
I I
−⎡ ⎤

= + ⎢ ⎥−⎣ ⎦
 (7) 

where 

Do date of obsolescence 

Dpc date of obsolescence for the predecessor component 

Io lifecycle code indicating component is obsolete (Io = 6) 

II lifecycle code indicating component is in the emerging lifecycle phase (II  = 1) 
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IR lifecycle code of synthesised replacement component 

L procurement lifetime (the amount of time the component is available for 
procurement from its original manufacturer). 

Once an obsolescence date for the synthesised replacement component has been 
determined, if it is earlier than the system’s end of support date, then the type of 
constraint will determine how the calculated obsolescence date is used. 

In the case of a ‘Strong A’ constraint, the obsolescence date for the synthesised 
replacement component must be later than previously created constraint end date for the 
predecessor ‘Strong A’ component since the predecessor ‘Strong A’ component’s 
obsolescence event does not force a design refresh for the system until the next 
production event. If the obsolescence date of the synthesised replacement component is 
not later than the previously created predecessor ‘Strong A’ component constraint end 
date then the procurement lifetime of the predecessor ‘Strong A’ component is 
successively added to the synthesised replacement component obsolescence date until the 
resulting date is later than the constraint end date. This scenario can occur when the time 
between production events is larger in comparison to the ‘Strong A’ component’s 
procurement lifetime (L). A production event must follow the obsolescence date for the 
synthesised replacement component otherwise no constraint is required. 

In the case of a Strong B constraint, once an obsolescence date for the synthesised 
replacement component has been determined, steps 1 and 2 in the constraint generating 
algorithm are used to create the corresponding constraint in addition to determining if 
another synthesised replacement component is needed. 

3.3 Step 3: constraint implementation 

In general, all constraints are applied to the design variable and joined with a logical 
‘AND’ so that all constraints must be satisfied for a design refresh plan to be considered 
viable; however, the temporal constraints developed in this algorithm are applied in a 
different way. The temporal constraints developed for the DRP process are grouped into 
pairs because they share a common variable. Each half of a constraint pair bounds a 
positive or negative infinite range, which together they bound a limited range called the 
constraint period. Since any value within the design variable vector can satisfy a 
constraint pair, all values within a design variable vector, x1 through xr are evaluated by 
the same constraint pair. One way to express this is by explicitly writing out all possible 
combinations that satisfy all the constraint periods and then joining each combinatorial 
set with a logical ‘OR’ operator. For example, suppose there are two constraint periods 
that with respect to each design refresh variable are separated (i.e., there is no overlap 
between the two constraint periods) and the two design refresh variables (x1 and x2), so 
then the number of possible combinations is: 

!
( )!

r
K r−

 (8) 

where K is the number of constraints and r is the number of design refreshes. This of 
course only works if r ≥ K since multiple refreshes can reside in one constraint period but 
one refresh cannot reside in separated constraint periods (also the factorial of a negative 
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number is undefined). Equation (9) is used model the effect that any of the design refresh 
dates can satisfy any of the constraints using the logical ‘OR’ operator. 

( )
( )
( )
( )

( )
( )
( )
( )

1 1

1 1

2 2

2 2

1 1 1 1 2 2

2 1 1 2 2 2

3 2 2 3 1 1

4 2 2 4 1 1

0 0
0 0
0 0
0 0

S S

E E

S S

E E

g x C x g x C x
g x x C g x x C

OR
g x C x g x C x
g x x C g x x C

⎡ ⎤ ⎡ ⎤= − ≤ = − ≤
⎢ ⎥ ⎢ ⎥= − ≤ = − ≤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − ≤ = − ≤
⎢ ⎥ ⎢ ⎥

= − ≤ = − ≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (9) 

where 

[ ]1, , rx x x= …  

The constraint implementation method [equation (9)] was presented in an informal way 
for brevity; however, amore formalised description can be found in non-linear 
generalised disjunctive programming (GDP), where the logical ‘OR’ operator is modelled 
using Boolean variables. These Boolean variables when paired with the terms of a 
constraint can ignore sets of constraints and perform the same effect as a logical ‘OR’ 
operator (Lee and Grossmann, 2000). 

4 Modelling uncertainty 

Accounting for uncertainty is essential for any model representing a real-world problem 
and is especially true with the DMSMS type obsolescence driven DRP process where 
there exist large uncertainties in dates (obsolescence dates, production dates, end of 
support dates), costs (refresh NRE costs, re-qualification costs), and component demand 
quantities. For this paper, the uncertainty in a parameter or variable is represented using 
probability distributions. 

DRP models that incorporate input uncertainty have been developed; albeit, their 
breadth of use are limited. Singh and Sandborn (2006) developed a DRP model and tool 
called the mitigation of obsolescence cost analysis (MOCA) which is a discrete event 
simulator that models input uncertainty using the Monte Carlo method. Currently, it does 
not provide the probability of a design refresh plan not satisfying all constraints (i.e., 
probability of failure) nor does it cost design refresh plans that violate constraints (Singh 
and Sandborn, 2006). The DRP model developed by Kumar and Saranga (2010) includes 
input uncertainty by utilising a restless bandit model that is equivalent to a Markov 
decision process; however, it makes the assumption that once a component is redesigned 
(i.e., design refresh) it can be procured indefinitely (Kumar and Saranga, 2010). This 
assumption confines the model’s applicability to a limited set of problems. Neither of 
these DRP models accommodates constraints on the timing of design refreshes. 

For an example of input uncertainty, consider Figure 2, which shows normal 
distributions modelling the probability density values for the design refresh date, the 
component obsolescence date, and the production date, which are all independent events. 
In Figure 2, consider a constraint that requires the design refresh date to be on or after the 
component obsolescence date but before the production date. In order to determine the 
probability that the design refresh date will satisfy the constraint, a probability aggregate 
needs to be created. To find the probability that dObsolescence < dRefresh < dProduction then the 
following probability aggregate is: 
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( ) ( ) ( )= < < <1 Obsolescence Refresh Refresh Production Obsolescence ProductionP P d d P d d P d d  (10) 

Figure 2 Example of normal distributions used to model input uncertainty of the DRP problem 
(see online version for colours) 
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Note: The dots located on each curve are an example of sampling the random input 
values from each distribution. 

A less efficient but more versatile method for approximating the probability that a design 
refresh plan will satisfy the constraints is to use a Monte Carlo method. The Monte Carlo 
method used randomly samples each variables’ and parameters’ distribute onto get a 
sample set, generates new constraints using the sampled data from each sample set, and 
then performs a Bernoulli trial using the constraints satisfied or unsatisfied as the success 
or failure outcome, respectively. 

The number of sample sets (N), and the number of times a sampled refresh plan fails 
(Nf) to satisfy the generated constraints can be used to calculate a mean probability of 
failure (Pf) for each refresh plan, 

f
f

N
P

N
=  (11) 

Each sample set is also used to compute the LCC associated with a design refresh plan. 
After computing the LCC for a design refresh plan (N) number of times, a histogram can 
be created to show the distribution of LCCs associated for a design refresh plan. This 
process is performed for all design refresh plans. 

5 Case study 

To demonstrate the DRP process with constraints, a case study was performed based on a 
portion of a communications systems consisting of one server cabinet with several racks 
which handles sensitive data that requires a high level of security. The entire system is 
represented by a BOM with a total of 79 components. This communications system is 
sustainment-dominated and includes supporting as well as producing several instances of 
the server cabinet design. Table 1 provides information on the scheduled production of 
the communications system (the low production volumes are characteristic of 
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sustainment-dominated systems). All production activities are planned to be completed in 
the month of January for each scheduled production year. 
Table 1 The production dates and associated production quantities make up the planned 

production schedule 

Production year 2007 2008 2009 2015 
Production quantity 4 4 4 2 

In this case study, the system limitations consist of an information security policy and the 
RoHS directive. 

The objective of this study is to show the effect of applying explicit constraints to the 
DRP process on the selection of the best design refresh plan. In order to demonstrate the 
effect of applying constraints on a system being managed by the DRP process, a DRP 
modelling test-bed is required. 

For this case study, the DRP modelling environment used is a DRP software tool 
called MOCA, which is a DRP methodology for strategic management of systems 
affected by DMSMS (Singh and Sandborn, 2006). The MOCA model utilises with input 
data in terms of hardware and software,5 and determines the lifecycle code of multiple 
refreshes coupled with the reactive mitigation approaches. MOCA takes as its input the 
BOM for a given system, along with the procurement cost and forecasted obsolescence 
dates or procurement lifetimes of the individual components (Figure 1) and computes 
associated LCCs for candidate refresh plans using equation (2).6 Constraints will be 
generated using equations (3) through (9) and imposed on the DRP process. Finally, the 
Monte Carlo method built into MOCA will be used to model input uncertainty and 
equations (9) and (10) will be used to determine the probability that a candidate design 
refresh plan can satisfy all constraints. 

This case study has two implicit limitations that need to be transformed into explicit 
DRP constraints. The first implicit limitation for this case study is an information security 
policy that states “No software regardless of function is permitted to operate beyond its 
end of support life. Exemptions to this policy may be used beyond their end of support 
life; however, new systems may not be built with the exemptions. Exemptions include: 
drivers, firmware, and BIOS”. This implicit limitation restricts any and all software used 
in the system. With the component types identified, the system that is composed of 79 
total components is searched for the matching component types. There were 12 
components identified with the component types restricted by the implicit limitation. 
Next obsolescence event definitions were assigned to the 12 components based on how 
their obsolescence events affected the system, according to the implicit limitation. 

The second implicit limitation for this case study is the RoHS directive which states 
“These Regulations implement EU Directive 2002/95 that bans the placing on the EU 
market of new electrical and electronic equipment containing more than agreed levels of 
lead”, and other hazardous materials. This implicit limitation also has exemptions as well 
as exclusions; however, none apply in this case study. This implicit limitation identifies 
any electronic component that is not RoHS compliant as the components being restricted 
from being built into new systems. Performing the same method used previously on the 
first implicit limitation, the system’s component list is reviewed and components that are 
restricted by the limitation are assigned obsolescence event definitions. There were seven 
components identified and assigned obsolescence event definitions. 
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For the sake of brevity, only three components will be used to demonstrate the 
formulation of explicit temporal constraints for the DRP process. Table 2 provides 
obsolescence information on the three example components (see Section 2.2 for 
explanation of RoHS compliance). 
Table 2 Subset of components whose constraint synthesis will be demonstrated in this case 

study 

Component name Component 
type 

Obsolescence 
date 

Procurement 
lifetime 
(years) 

Obsolescence 
event type 

RoHS 
compliant 

Fan controller driver Driver 2007.5 10 Strong A N/A 
Fan controller Hardware 2018 30 Weak No 
Office 2000 
professional 

Software 2009.54 10 Strong B N/A 

Note: The components listed are three out of the 19 total identified components with 
component types restricted by the two implicit limitations. 

The assumptions for the DRP process are: LAT is set to three years, RoHS compliance 
date of January 1, 2014 (DC = 2014.0), an end of support date (EOS) of 2020, an analysis 
period from 2005 to 2020, and a replacement component lifecycle code of 2 (IR = 2). It 
will be assumed for this system that there are no penalty costs or fees associated with 
violating a constraint. An example of these penalty costs is when a design refresh occurs 
after a production date causing a delay in production which results in a penalty cost. 
Table 3 Constraints generated from the ‘Strong’ components listed in 2 and their synthesised 

replacements 

Affected component Component 
generation 

Start date (CS) bound  
[see equation (5)] 

End date (CE) bound [see 
equation (7)] 

Fan controller driver Original g1(x) = x – 2004.50 ≤ 0 g2(x) = 2008.00 – x ≤ 0 
Fan controller Original g3(x) = x – 2011.00 ≤ 0 g4(x) = 2015.00 – x ≤ 0 
Office 2000 
professional 

Original g5(x) = x – 2006.54 ≤ 0 g6(x) = 2009.54 – x ≤ 0 

Office 2000 
professional 

Replacement g7(x) = x – 2015.54 ≤ 0 g8(x) = 2017.54 – x ≤ 0 

The constraint generating algorithm is used to create the explicit constraints for each of 
the three components listed in Table 2. A detailed explanation of the formulation of the 
explicit constraints for each of the components is rather long and tedious for this paper; 
however, the resulting explicit constraints are shown in Table 3. When looking at the 
resulting explicit constraints keep these three ideas in mind: 

1 the fan controller component in Table 1 appears that it should not require a constraint 
because it is labelled as having a ‘Weak’ obsolescence event type; however, since 
the fan controller is not RoHS compliant a constraint is required 

2 the constraint generating process does not stop with the original component, rather it 
stops with there placement components that replace the original component 

3 the ‘Strong B’ obsolescence event types require back fits which need to be defined. 
Table 4 show the back fits created from the ‘Strong B’ obsolescence event types. 
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Table 4 Production events used to implement backfits required for strong B events 

Production date (DP) Production quantity Affecting component Component generation 

2009.54 12 Office 2000 
professional 

Original 

2017.54 14 Office 2000 
professional 

Replacement 

Figure 3 shows the results of the MOCA analysis of the example described in this section 
without applying constraints and without uncertainty. Figure 4 shows the results of the 
MOCA analysis with the above generated constraints applied along with five other 
‘Strong A’ constraints. The horizontal axis of the graph shows the mean date for each 
refresh plan (each point is plotted at the mean of all the refresh dates in the plan) and the 
vertical axis shows the corresponding total LCC. The data points each represent unique 
design refresh plans (unique combinations of design refreshes). The shape of the data 
point indicate show many design refreshes are in the refresh plan. The filled circle is a 
single refresh, the triangles have two refreshes in their plans, the square represents plans 
with three refreshes in them, etc. The rectangle (dash) is the zero refresh plan, which has 
zero refresh dates (i.e., all obsolescence is managed with life time buys for this example) 
and acts as a comparison LCC between doing nothing (i.e., zero refresh) and doing 
something (i.e., one or more refreshes). 

Figures 3 and 4 clearly demonstrate the effect of introducing constraints to the DRP 
process. The increase in the number of refresh plans from 17 to 58 is due to the additional 
production events that were added to implement the ‘Strong B’ backfits. Figure 4 shows 
that many refresh design plans can be created; however, once temporal constraints that 
reflect system limitations are applied only a few plans remain viable, i.e., satisfy all the 
constraints. In this case, 18 plans ranging from two to four refreshes per plan are viable 
out of a total of 58 plans. The violating plans are crossed out. The least expensive viable 
plan has two refreshes at 2007 and 2015 (triangle data point), which is circled in Figure 4. 
Note, the best plan without constraints applied is the zero refresh plan. 

Figure 3 MOCA generated refresh plan mean dates versus LCC for the case study system with no 
constraints applied (see online version for colours) 
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Note: The data point for each refresh plan is plotted at the mean of the refresh dates in the 
respective plans. 
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Figure 4 MOCA generated refresh plan mean dates versus LCC for the case study system with a 
deterministic application of the generated constraints (see online version for colours) 
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Notes: The least costly plan that satisfies all constraints is circled. This figure is scaled 
the same as Figure 3. 

Figure 5 MOCA generated refresh plans probability of failure versus LCC for the case study 
system with the application of the generated constraints and statistical parameters 
accounting for uncertainty (see online version for colours) 
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Note: The best refresh plan circled in red (i.e., two refresh plan) in Figure 4 is also circled 
in red in this figure. 

So far, the case study has assumed that there are no uncertainties associated with the data 
describing the system. The case study analysis is performed assuming that all dates in 
Table 2 are the mean of normal distributions (μ*), all with a standard deviation of one 
year (σ*). The uncertainty analysis method used does not require that the uncertainty 
inputs be represented as normal distributions (or symmetric distribution) – normal 
distributions were chosen for convenience. 
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Figure 6 MOCA generated refresh plans probability of failure versus LCC for the case study 
system with application of the generated constraints and statistical parameters 
accounting for uncertainty (see online version for colours) 
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After running a statistically significant number of samples, the results revealed that the 
best (i.e., non-violating and least expensive) plan found by deterministic methods is not 
the best plan (i.e., minimised probability of failure and LCC) when input uncertainty is 
present. Looking at Figure 5, the horizontal-axis is the mean probability of failure, which 
stays constant throughout time assuming the date distribution parameters (e.g., μ*, σ*) do 
not change. The vertical-axis is the LCC of the system for each refresh plan; however, 
unlike the previous figures, in Figures 5 and 6 the vertical-axis is the mean LCC. Figure 6 
shows the nine refresh plans with a 10% and lower probability of failure. Note no plans 
have 0% probability of failure (i.e., 100% probability of satisfying all the constraints 
when uncertainties are considered). 

Uncertainty allows for better model approximation to ‘real-world’ conditions since 
nothing measured is without uncertainty, and it allows us to be more risk seeking rather 
than adverse so as to consider refresh plans that have less than 100% probability of 
satisfying all constraints, which we would otherwise dismiss. 

To better understand the basic effects of the parameters used in this problem, the 
following observations are discussed. Generally, if the LAT is increased, it will drive up 
the design refresh costs since each design refresh will be looking farther ahead in time 
resolving any obsolescence issues that show up. With a longer, LAT, all constraint 
periods are increased thus making it more likely for design refresh plans to satisfy them. 
With regard to the lifecycle code of replacement components, in general, increasing the 
lifecycle code means a shorter remaining procurement life of the replacement 
components, and potentially increasing the LCC due to the increased need to mitigate the 
increased frequency of obsolescence issues. 

6 Discussion 

The work presented in this paper is applicable to the strategic management of DMSMS 
type obsolescence; however, it should be mentioned that this paper does not intend to 
suggest that strategic management via DRP is always better than reactive and pro-active 
management approaches for all types of systems. Also, strategic solutions do not displace 
the use of reactive management to manage obsolescence events between refreshes. 
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The uncertainty modelling presented in this paper assumes that there are no costs 
associated with the order of events (e.g., design refresh events, obsolescence events, and 
production events) even when the order of events violates a constraint. To model costs 
associated with the order of events, two key pieces of information need to be developed: 

1 the probability a specific order of events will occur 

2 a method for calculating the associated costs for the specific order of events. 

The probability that a specific order of events will occur can be found by using a 
probability aggregate. Determining the cost associated with the order of events will 
involve both time dependent and independent functions. Since each scenario has 
associated costs and a probability of occurring, then an expected value could be 
calculated for each design refresh plan put into the DRP objective function. 

The case study demonstrated the effect of imposing temporal constraints not only on 
the best solution, but on all solutions (Figure 4). For example, imposing the constraints 
based on ‘Strong B’ obsolescence type events results in all design refresh plans 
increasing their associated LCC due to the backfit costs needed to implement the design 
refresh on fielded systems. 

While theoretically, a refresh plan can always be found that satisfies all constraints all 
the time in the presence of uncertainties, in the real world there are several practical 
limitations on refresh plans and it is common for real systems that the actual set of refresh 
plans you have to select from will not include any plans that satisfy all the constraints all 
the time. This happens due to the fact that the plans you have to select from either: 

1 conform to a particular management tradition, style, or culture (e.g., the use of a 
fixed frequency refresh planning scheme) 

2 they were generated by an algorithm that conforms to a set of generation rules [e.g., 
some DRP methodologies use a ‘just in time’ refresh approach, Singh and Sandborn 
(2006)]. 

Therefore, it is valuable to be able to choose the best refresh plan from a set of refresh 
plans where none of the refresh plans satisfy all the criteria all the time. The results of the 
case study concluded with a graph of the criterion space (Figure 6), which placed 
emphasis on the question ‘what is the ‘best’ solution?’ Finding the ‘best’ solution could 
be done by various multi-objective algorithms that include preferences such as a utility 
function method, which are well developed in optimisation literature. If preferences are 
not included then the most straight forward method for finding the ‘best’ solution would 
be to find the design refresh plan with the lowest probability of failure and lowest 
associated LCC, which is done by normalising both objectives and determining which 
design refresh plan is closest to the origin. 

The refresh plans produced by the DRP methodology is widened in scope by taking 
real world system limitations and transforming them into constraints that can be directly 
applied to the DRP process. Future work will be developing the expected LCC value 
calculation which involves deriving a series of probability aggregates for all possible 
order of events (i.e., event permutations) and creating penalty cost functions for when the 
order of events results in a constraint violation or an infeasible situation such as when a 
design refresh activity completes after the scheduled start of a production event. 
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Notes 
1 Inventory or sudden obsolescence, which is more prevalent in the operations research 

literature, refers to the opposite problem to DMSMS obsolescence. Inventory obsolescence 
occurs when the product design or system component specifications changes such that the 
inventories of components are no longer required, e.g., (Song and Lau, 2004). Another type of 
obsolescence which is different from DMSMS and thus not addressed in this paper is 
functionality improvement dominated obsolescence, which is when manufacturers cannot 
maintain market share unless they evolve their products in order to keep up with competition 
and customer expectations (manufacturers are forced to change their products by the market) 
(Rai and Terpenny, 2008). 

2 DMSMS management is not about forecasting and managing the effects of disruptive 
technologies that cause the effective obsolescence of whole classes of products; rather it is 
about the much more common problem of individual components (particularly electronic 
components) being discontinued by a manufacturer in favour of a newer version of the same 
component. 

3 The BOM input into the DRP process can be a collection of information from various levels 
and sources within an organisation. 

4 Inclusive constraint – requires the design variable value to be within the bounds of the 
constraint to satisfy the constraint. Alternatively, an exclusive constraint requires the design 
variable value to be outside the bounds of the constraint to satisfy the constraint. 

5 Hardware and software can and do have interdependencies, which drive one another’s 
obsolescence; however, for this case study it will be assumed that each component is 
independent or de-coupled from the effects of a dependent component’s obsolescence event 
(Nelson and Sandborn, 2010). 

6 Several obsolescence forecasting methods can be used as input to MOCA (Gravier and 
Swartz, 2009; Henke and Lai, 1997; Josias and Terpenny, 2004; Meixell and Wu, 2001; 
Meyer et al., 2004; Solomon et al., 2000; Sandborn et al., 2007; Sandborn et al., 2010; Wu  
et al., 2006). Obsolescence forecasts for electronic components are also available from several 
commercial sources. 


