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Abstract—“Availability-based” contracting originated because 
customers with high availability requirements are in many cases 
interested in migrating from buying the actual system to buying 
the availability of the system. A well-known example of 
availability-based contracting is Performance Based Logistics 
(PBL). 

Prognostics and Health Management (PHM) methods are 
incorporated into systems to avoid unanticipated failures that can 
potentially impact system safety, result in additional life cycle 
cost, and/or adversely affect the system availability. While 
predicting the availability of a system based on known or 
predicted system parameters is relatively straightforward and 
can be accomplished using existing methods; determining the 
system parameters that result in a desired availability is not and 
is generally performed using “brute force” search-based methods 
that become quickly impractical for designing systems with more 
than a few variables and when uncertainties are present.  

This paper presents the application of PHM within a “design for 
availability” approach that uses an availability requirement to 
predict the required logistics, design (including reliability) and 
operation parameters with and without the application of PHM 
methods. A life cycle cost analysis is used to quantify trade-offs of 
using PHM methods versus more traditional maintenance 
approaches in the context of availability contracts. 

Keywords-component; PHM, availability-based contracts, 
performance-based contracts, performance-based logistics (PBL), 
life cycle costing, modeling and simulation. 

I. INTRODUCTION 

A Prognostics and Health Management (PHM) 
implementation is adopted to provide advanced warning of 
unanticipated failures, enhance the decision making process for 
maintenance planning, enhance the real-time assessment of 
system’s health, lower sustainment costs, provide product 
usage feedback into the product design process and potentially 
improve availability. Thus, a successful PHM implementation 
would impact the availability of the system. An understanding 
of the relationship between PHM methods and system’s 
availability is critical in systems with a high-availability 
requirement.  In availability-centric systems (e.g., power 

generation, product lines, security or safety systems, critical 
infrastructure, commercial aircraft, weapons systems, etc.), a 
drop in availability could result in catastrophic loss of life or 
money. 

Availability is the ability of a service or a system to be 
functional when it is requested for use or operation. The 
availability of an item is a function of its reliability (frequency 
of a failure) and maintainability (if an item does fail, how 
quickly could it be restored to operation). Several different 
types of availability can be measured for repairable systems 
(e.g., inherent, achieved, operational, etc.) [1]. However, this 
analysis is focused on the operational availability since it 
implicitly incorporates other forms of downtime-based 
availability and it is the most commonly used form of 
availability specified in availability contracts, however, the 
proposed design for availability methodology is general and 
could be easily extended to incorporate other types of 
availability. Operational availability is the probability that a 
system or piece of equipment operates ordinarily, i.e., 
functional and available for operation when requested, over a 
specific period of time under stated conditions [2, 3]. 
Operational availability (AO) accounts for all types of 
maintenance and logistics downtimes. It is computed as the 
ratio of the accumulated uptime to the sum of the accumulated 
uptime and downtime, 

downtimeuptime
uptime

Ao +
=  (1) 

where uptime is the total accumulated operational time during 
which the system is up and running and able to perform the 
tasks that are expected from it. Downtime is generated when 
the system is down and not operating when requested due to 
repair, replacement, preventative maintenance, waiting for 
spares or any other logistics delay time. The summation of the 
accumulated uptimes and downtimes represents the total 
operation time for the system.  Other types of downtime-based 
availability differ from operational availability in the specific 
activities that are included in the uptimes and downtimes [4]. 
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Customers of availability-centric systems, are in many 
cases interested in buying the availability of a system, instead 
of actually buying the system itself; or the amount of money 
that the system manufacturer or system provider is paid for is a 
function of the availability achieved. This approach illustrates 
the concept of “availability-based” contracting. A detailed 
explanation of these types of contracts, and similar types of 
contracting (e.g., outcome-based contracting [5] and 
performance-based logistics [6,7]), is provided in [8]. 
Generally, Availability-based contracts specify an availability 
requirement that has to be met at all times, or during specific 
time periods, throughout the system’s operational life. Both, 
the customer and the system manufacturer or provider, have the 
challenging task of appropriately pricing the contract and 
determining the necessary system’s design and support 
parameters to meet the availability requirement specified in the 
contract. To support these activities the concept of “design for 
availability” has been introduced, which is a methodology that 
uses a specific availability requirement (as an input) to 
determine the required logistics, design and operations 
parameters (as outputs). A detailed description of the 
methodology and its application is provided in [8]. The 
preliminary work appearing in [8] was limited to the system 
parameters affecting either downtime (i.e., when the system is 
down undergoing a repair or waiting for spares) or uptime (i.e., 
when the system is up and running), but not both. In this paper, 
the application of the methodology has been extended and 
generalized to include the prediction of system parameters 
concurrently affecting both downtime and uptime, to meet a 
specific availability requirement. 

The derivation and application of the design for availability 
methodology that is used to determine the necessary system 

parameters (e.g., reliability) to meet an availability requirement 
are presented in this paper. The next section describes the 
design for availability approach and the required steps for the 
application of the approach. Section III illustrates the 
application of the methodology to determine the reliability of 
the system (i.e., time-to-failure) for simple case study examples 
for systems with and without PHM subject to an availability 
requirement. The example application includes a life cycle cost 
and return on invest analysis. 

II. DESIGN FOR AVAILABILITY APPROACH 

Using today’s models and tools, availability is computed 
based on known or estimated system reliability, operational and 
logistics parameters, etc. However, while determining the 
availability that results from a set of system parameters and/or 
events is straightforward, determining the system parameters 
and/or events that result in a desired availability is not. The 
goal of the work presented in this paper is to reverse the 
problem. In other words, to create a methodology that 
determines the necessary system reliability, operational 
parameters, and/or logistics management parameters to meet a 
specific availability requirement; i.e., a “design for availability” 
methodology. 

The methodology introduced uses the availability 
requirement to compute and impose the necessary uptimes and 
downtimes throughout the system’s life. Then, it uses these 
imposed uptime and downtime values to solve for the unknown 
system parameters. In the context of design for availability, 
there exist two distinct types of system parameters: parameters 
affecting either uptime or downtime (not both) and parameters 
concurrently affecting both uptime and downtime. Figure 1 

Determine where/when the availability requirement is imposed on the system

System availability requirement expressed (most generally) as a probability distribution

Select design and/or support parameter(s) to solve for

Could be 
specified by 

an availability 
contract

Parameters affecting both 
downtime and uptime 

Parameters affecting either 
downtime or uptime 

Start with a guess of the selected system 
parameter, to initiate the simulation

Determine the relationship between the known 
system parameters, required availability and 
the selected unknown system parameter(s)

Solve for the selected system parameter(s)

Impose the selected system parameter(s) 
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each selected design and/or support parameter 

Determine the relationship between downtime 
or uptime and the selected system parameter(s)

Solve for the selected system parameter(s)
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Figure 1.  Design for Availability Methodology. 



shows the steps to formulate and execute the design for 
availability solution for both types of parameters. Previous 
work [8] demonstrates the application of the methodology to 
parameters affecting either uptime or downtime. The work 
presented in this paper is focused on the derivation of system 
parameters that concurrently affect both uptime and downtime. 

Details for each step of the process of determining system 
parameters concurrently affecting both uptime and downtime 
(for a specific availability requirement) are discussed 
qualitatively in the following subsections.  An example 
application of the process is provided in Section III. 

A. Interpreting the Availability Requirement 
The design for availability methodology is applicable to 

any type of input of the availability requirement (e.g., single 
value, probability distribution, range of values, etc.). 
Availability requirements, although often expressed as a single 
value, really generally represents a probability distribution. 
Since, even when a contract specifies the availability 
requirement as a single value, the interpretation of this single 
value either leads to considering the average availability of a 
population of systems, i.e., the average of a distribution; or the 
single value is the minimum availability of all system instances 
within the population. These interpretations are consistent with 
the fact that the reliability of the product or system is 
represented as a probability distribution (or, more accurately a 
set of probability distributions each corresponding to a different 
relevant failure mechanism); thus using a logistics management 
plan that is common across the population, each system 
instance will have a different availability value depending on 
the failure dates of the subsystem instances that occupy it and 
the operational profile variations. 

B. Determine Where/When the Availability Requirement is 
Imposed 
To generalize the design for availability model, a 

conservative approach is adopted by fulfilling an availability 
requirement at all times during the entire support life. In other 
words, the model satisfies any availability contract 
requirement, regardless of the availability evaluation time 
intervals specified by the contract terms. However, if needed, 
the model could be adjusted to evaluate the availability 
requirement only at the contract’s defined times (which could 
be less conservative). For the remainder of this discussion it is 
assumed that the availability requirement implies that the 
operational availability (Ao) should not drop below the 
availability requirement value at any time during the entire 
support life. Notice that if the availability requirement is 
interpreted as a probability distribution, then the availability of 
every member of the population should satisfy a sampled value 
from the availability distribution requirement. However, if the 
availability requirement is interpreted as a single minimum 
value, then the availability of every member of the population 
should satisfy this availability single minimum value 
throughout the entire support life.  

By analyzing the AO variations based on (1), the AO keeps 
decreasing during downtimes and increasing during uptimes. In 
other words, AO reaches its local minimum values at the end of 

every downtime. Thus, if the availability requirement is 
satisfied at the end of every downtime (minimum AO values 
satisfy the requirement), it will be satisfied at all times during 
the support life of the system. Therefore the approach is to 
impose the availability requirement at the end of every 
downtime. 

C. Select Design and/or Support Parameter to Solve for 
Different values of a system parameter could generate 

different downtimes and/or uptimes, resulting in different 
availability values. For example, to meet a specific availability 
requirement, the reliability of the system could be improved, 
and/or the logistics management could be modified. This 
means, once the availability requirement is defined, a decision 
has to be made upfront regarding which system parameter the 
system manufacturer, provider or user is willing to change to 
meet the availability requirement. Once the system parameter 
that will be modified to meet the availability requirement is 
selected, the availability requirement will be used to solve for 
it, i.e., the availability requirement is used as an input to the 
model, and the selected/unknown system parameter is one of 
the resulting outputs of the model. 

D. Determine the Type of Parameter 
As mentioned previously, there exist two types of system 

parameters: parameters affecting either uptime or downtime 
(not both), and parameters concurrently affecting both uptime 
and downtime.  

In the case of parameters affecting either uptime or 
downtime (not both), one of the two quantities (uptime or 
downtime) is known and can be determined from the known 
system parameters, while the other quantity is unknown. In 
other words, a change in the value of the selected unknown 
system parameter produces a change in only one of the two 
quantities (either uptime or downtime), while the other quantity 
is exclusively dependent on the other known system 
parameters. For example, if uptime is the known quantity 
(determined from the known system parameters), while the 
downtime is the unknown quantity that is imposed based on the 
required availability and the system generated uptimes. Then, 
the selected unknown system parameter solely depends on the 
downtime and is computed based on the imposed downtime. 
This version of the methodology is only applicable to system 
parameters that explicitly affect either uptime or downtime, but 
not both. A detailed description and treatment of this type of 
parameters was provided in [8]. 

The focus of this paper is on the other type of system 
parameters, i.e., parameters concurrently affecting both uptime 
and downtime. A change in the value of this type of parameter 
could produce a change in both uptime and downtime. Both 
quantities (uptime and downtime) are dependent on this type of 
parameters (reliability is a prime example). When one of these 
system parameters is unknown, then both uptime and downtime 
are unknown. Therefore, a downtime or uptime requirement 
cannot be exclusively imposed as described in the previous 
paragraph and in [8]. This means, a relationship between the 
known system parameters, required availability and the 
selected unknown system parameter needs to be defined, to 
solve for this type of system parameter. 



E. Determine the Relationship Between the Known System 
Parameters, Required Availability and the Selected 
Unknown System Parameter 
As explained in the previous subsection, when the selected 

unknown system parameter concurrently affects downtime and 
uptime, a relationship between the known system parameters, 
required availability and the selected unknown system 
parameter needs to be determined in order to solve for the 
unknown system parameter. 

In this case, there are three unknown quantities: 1) the 
unknown system parameter, 2) the downtime and 3) the uptime. 
Therefore, three relationships need to be established in order to 
solve for the three unknown quantities. Since these types of 
system parameters explicitly affect the uptime, therefore, the 
uptime could be expressed as a function of the unknown system 
parameter; this generates the first relationship. Similarly, the 
unknown system parameter explicitly affect the downtime, 
thus, downtime could be expressed as a function of the 
unknown system parameter; generating the second relationship. 
Also, availability is by definition a function of uptime and 
downtime; hence the third relationship. At this point, three 
relationships have been defined, with three unknowns (the 
unknown system parameter, the downtime and the uptime), thus 
the unknown system parameter, uptime, and downtime, can be 
solved for. 

F. Start with a Guess of the Selected System Parameter, to 
Initiate the Simulation 
In general, a closed-form analytical solution cannot be 

determined when solving for the unknown system parameter as 
a function of known quantities (availability requirement and 
other known system parameters), since the sequences of the 
accumulated event outcomes are only generated in real 
simulation time. Also, when modeling real complex systems, 
probabilistic models are usually used where quantities include 
uncertainties (probability distributions). 

The event outcomes associated with sampled values can 
only be accumulated by sampling the known quantities in real 
simulation time. Basically, an event outcome generated by the 
same known system parameter is not generally repeated (i.e., it 
does not generally reoccur in an identical form at a regular 
interval). Each sample of the same quantity, i.e., system 
parameter, could result in a different event outcome, producing 
a different sequence of events and results for every system 
instance.  

As a result of the situation described above, a conservative 
guess of the initial value of the selected unknown system 
parameter is required in order to launch the simulation, i.e., 
launch the sampling of the known quantities and accumulate 
the events outcomes. However, this guess is only used to 
initiate the simulation; it does not affect the final results of the 
analysis. 

G. Solve for the Selected System Parameter 
The model uses the initial guessed value of the selected 

unknown system parameter to generate the first uptime and 
downtime values. Then, the unknown system parameter value 

is computed and updated, at the end of the first downtime, 
while accounting for the accumulated events type and duration. 
Basically, the selected unknown system parameter is solved for 
or imposed using the known system parameters and the 
availability requirement. 

H. Impose the Selected System Parameter Requirement on 
the Uptime and Downtime 
The computed system parameter value is used to compute 

and update the uptime and downtime values. Notice that the 
availability requirement was imposed through the selected 
system parameter, then the requirement has been transferred 
through the selected system parameter to impose the uptime 
and downtime values that are necessary to meet the availability 
requirement. Once all quantities are computed and updated, the 
process continues forward in time to the next event. The same 
computational process is performed at the end of every 
downtime, until the timeline reaches the end of the system’s 
support life. 

It is important to note that the described process is not 
iterative. Updating the unknown system parameter once at the 
end of every downtime is not the same as using multiple values 
of the unknown design variable and continually iterating the 
entire process until the availability requirement is met. And 
because it is not iterative, it has the following advantages: 
computationally simple and straightforward, an exact solution 
could be determined, and a real-time assessment could be 
performed. 

Finally, the model uses the updated selected system 
parameter, uptimes, and downtimes to compute other quantities 
of interest (e.g., life cycle cost, avoided failures, etc.). 

III. APPLICATION OF THE METHODOLOGY: PREDICTING THE 
RELIABILITY 

In this section, the design for availability methodology will 
be demonstrated for two system sustainment approaches: 
unscheduled maintenance and data-driven PHM [9], with the 
same availability distribution requirement (input). The 
objective is to determine the minimum1 allowable reliability, 
i.e., time-to-failure (TTF), of the LRUs to meet the availability 
requirement. In this example, the reliability of each LRU is 
represented by its TTF, where each TTF corresponds to the 
period of time until the occurrence of the next actual failure. 

                                                           
1 The required availability distribution and other quantities (inputs) that may 
be described as probability distributions are sampled and used to solve for a 
single value of TTF. This value represents the minimum TTF value (minimum 
allowable reliability) that is necessary to meet the sampled required 
availability in the environment defined by the sampled values of all the other 
input quantities. This process is repeated for each socket (a socket is an 
instance of an installation location for an LRU) in the population, resulting in 
a histogram of minimum allowable TTFs.  Each individual in the histogram 
represents one socket in the population of sockets under one possible set of 
life cycle conditions. 



Notice that the TTF is the type of system parameters that 
concurrently affects both uptime and downtime. For example, 
consider the following scenario: the inventory is out of spares, 
the replenishment spares will be delivered one year from now, 
and the system is using last spare available from the inventory. 
The system will be up and running as long as this spare doesn’t 
require replacement, thus the system uptime is dependent on 
the TTF of this spare. Also, the system downtime could be 
minimized if the spare being used does not require replacement 
until the replenishment spares are delivered (one year from 
now). However, as soon as the spare requires replacement, the 
system will be down until additional spares are received. Thus, 
the system downtime is dependent on the TTF of this spare. 
This simple scenario demonstrates how the TTF of the LRUs 
could affect both the uptime and downtime. 

To demonstrate and verify the derivation of the TTF for a 
specific availability requirement, the design for availability 
methodology has been implemented within a PHM Return on 
Investment (PHM ROI) tool. The PHM ROI tool is a discrete 
event simulation that follows a population of sockets (a socket 
is an instance of an installation location for an LRU) 
throughout their entire support life from the first line 
replaceable unit (LRU) installation in the socket to the 
retirement of the socket. The tool determines the life cycle cost, 
return on investment and availability impacts associated with 
putting PHM structures into systems. The PHM ROI tool 
includes the modeling of other quantities as well (e.g., 
operational profile, false positives, cost of money, inventory 
management, etc).  A detailed description of the PHM ROI tool 
is provided in [9, 10].  

In order to use the application of the methodology on TTF 
as a qualitative verification of the application of the 
methodology, the following three steps are performed: first, 
using the availability distribution requirement as an input, 
determine the distribution of the minimum allowable TTF. 
Then, for verification purposes, use the generated TTF 
distribution as an input to the existing PHM ROI simulation 
(described in the introduction to this section) to predict an 
availability distribution as an output. Finally, compare the 
availability distribution input requirement to the availability 
distribution determined as an output – they should be 
equivalent. 

Appendix A to this paper provides all the case study inputs, 
including LRU description, implementation and maintenance 
costs, operational profile and inventory management 
parameters. Notice that the TTF information is not provided in 
Appendix A, since it is an unknown quantity that needs to be 

determined based on the availability requirement, using the 
design for availability methodology. 

A. Reliability (TTF) Derivation 
Both, the TTF values and the distributions modeling the 

effectiveness of a particular PHM approach, are used to predict 
the remaining useful life (RUL) of the LRUs. For each PHM 
sustainment approach (e.g., data-driven, model-based – also 
known as physics of failure, fixed-interval scheduled 
maintenance and unscheduled maintenance), the sampling of 
the TTF values is defined differently. The sampled TTF values 
are used to predict the maintenance events and to determine 
whether the selected PHM approach detected (or failed to 
detect) a failure [9]. 

In the unscheduled maintenance case, the sampling of the 
TTF values predict the date of the next maintenance event 
associated with a failure of a system instance. Spares are drawn 
from the inventory as needed to support maintenance. Once the 
inventory reaches a threshold value, additional spares are 
ordered, and the replenishment spares are delivered after a 
delivery lead time. Figure 2 illustrates this scenario, where 
MDT is maintenance downtime, ILT is the inventory lead time, 
ST is the spares threshold (once the inventory level drops below 
this value, additional spares are ordered), and IDT is inventory 
downtime (when the inventory runs out of spares, and the 
system is down waiting for spares). 

Notice that the accumulated uptime accounts for all 
system’s uptimes. This includes the system’s uptime while 
using the inventory initial spares (IS) and the system’s uptime 
while using inventory replenishment spares (RS). The RS could 
be ordered multiple times as needed, 

( )( ) ( )( )�� += TTFRSTTFISUT       (2) 

The accumulated downtime includes the maintenance 
downtime (MDT) and the inventory downtime (IDT),  

=+= �� � MDTIDTDT     

( )( )( )� �+ MDTTTFSTILT -      (3) 

Notice that the summations in equations (2) and (3) do not 
necessarily refer to the analytical summations, but to the 
accumulation of events. Since these relationships are based on 
the accumulation of the event outcomes and sequences, that are 
only determined in real simulation time. Also, the model is 
probabilistic, this means each sample of the same quantity, i.e., 

Time
TTF1 TTF2 TTF3

IDT1

ILT1

MDT1MDT1 MDT2 MDT4

TTF4

ST 

MDT3

 
 

Figure 2.  TTF implication on the operational timeline. 



system parameter, could result in a different event outcome. A 
detailed explanation is provided in Section II. 

The operational availability is, by definition, the 
accumulated uptime over the total operational time (i.e., sum of 
the total accumulated uptime and downtime), 

� �
�

+
=

DTUT

UT
Ao  (4) 

where UT is the accumulated uptime and DT is the 
accumulated downtime. 

For example, the kth TTF value could be derived by 
combining equations (2), (3) and (4). The kth TTF corresponds 
to the kth downtime, where the kth downtime could be a 
maintenance downtime, inventory downtime, or any other 
logistics downtime. Once again, the summations in equation 
(5) do not refer to analytical summations, but to the 
accumulation of events outcomes and sequences. Therefore, the 
right side of equation (5) does not explicitly include the “k” 
subscript, 

    ( ) ��
��

ST+RSIS+
A
-A1

MDT+ILT
=TTF

o

o
k  (5) 

Notice that equations (2)-(5) could be slightly different for 
each problem set up or model. The modeling of the operational 
timeline illustrated in this section is by no means unique. 
However, different models could provide different equations, 
but, the steps of the procedure remain the same. Thus, the 
application of the design for availability methodology is 
general and could be apply to any problem, independently of 
the set up of these equations.   

After every downtime, the TTF is computed using the 
procedure described above. However, the methodology derives 
the minimum allowable TTF that is necessary to meet the 
availability requirement. Figure 3 illustrates the process of 
updating the computed TTFs. Basically, after every downtime, 
the computed TTF is compared to the previous value, if the 
current value is greater than the previous one, then the current 
value is substituted for the previous value. But if the current 
value is less than the previous one, then the current one is used. 
Once, the current TTF value is updated, this new TTF 
requirement is imposed on the uptime and downtime values 

Time

TTF1TTF1 TTF2TTF2DT1DT1 DT2 DTkDTk ……
TTFk

kk =TTFTTF
updated

If TTFk > TTFk-1 If TTFk < TTFk-1

1k-k =TTFTTF
updated

Update UT and DTUpdate UT and DT Update UT and DTUpdate UT and DT
 

 
Figure 3.  Updating the TTFs, UTs and DTs. 
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Figure 4. Solution process. 



through equations (2) and (3). Finally, the model uses the 
updated TTFs, uptimes, and downtimes to compute other 
quantities of interest. 

While considering an availability requirement that is 
expressed as a probability distribution is more realistic, it 
makes the process of determining the necessary system 
parameters to meet the availability requirement challenging, 
since every system instance could have a different availability 
requirement based on the sampled value from the probability 
distribution. Figure 4 shows the process used to generate a 
distribution of system parameter values using a discrete event 
simulator (the PHM ROI tool described earlier). The Monte 
Carlo implementation of the model samples the required 
availability distribution and other quantities that may be 
described as probability distributions, and then uses the 
quantities to solve for a value of the system parameter using the 
design for availability methodology. This process is repeated 
for each socket (a socket is an instance of an installation 
location for an LRU) in the population, resulting in histograms 
of system parameter values. 

B. Application: Unscheduled Maintenance vs. Data-Driven 
PHM 
A detailed description of the inputs data used for this 

example is provided in Appendix A, for both unscheduled 
maintenance and data-driven approaches. For this example case 
study the optimal data-driven PHM prognostic distance was 
determined by selecting the prognostic distance resulting in a 
minimum life cycle cost. Where the prognostic distance is 
defined as the measure of how long the prognostic structure or 
prognostic cell is expected to indicate failure before the system 
actually fails [9]. This analysis has resulted an optimal 
prognostic distance of 600 operational hours (see Figure 5). 

The right vertical axis in Figure 5 corresponds to the mean 
value of the allowable minimum TTF distribution 
corresponding to each prognostic distance. Since, for each 
prognostic distance there is a corresponding allowable 
minimum TTF distribution and life cycle cost distribution. 
However, the TTF and life cycle cost values shown on Figure 5 
are the means of the generated TTF and life cycle cost 
distributions respectively. 

While data-driven PHM could provide an opportunity to 
avoid unanticipated failures and perform more on-site 
scheduled repairs (since LRUs are maintained before they 
actually fail, i.e., a better chance to be repaired, rather than 
replaced or thrown away), a good understanding of the impact 
of a PHM implementation on the system parameters (e.g., 
maintenance planning and inventory management) is 
indispensable. One of PHM’s key parameters is the prognostic 
distance, which could affect both the maintenance planning and 
inventory management. Small prognostic distances maximize 
the LRUs useful life, but result more unanticipated failures 
(more unscheduled maintenance events, i.e., expensive and 
larger maintenance time), thus, potentially increasing the 
maintenance downtime. Consequently, they require larger TTFs 
to produce larger uptime durations, since the pre-imposed 
uptime-downtime relationship has to be maintained in order to 
satisfy the availability requirement. In this case, the life cycle 

cost is increased because of the cost of the unscheduled 
maintenance, i.e., unanticipated failures. On the other hand, 
large prognostic distances throw away considerable remaining 
useful life of the LRUs. Thus, increase the number of spares 
drawn from inventory and spares sent to the repair process, and 
potentially increase the inventory downtime. However, more 
failures are avoided (more scheduled maintenance, i.e., less 
expensive and shorter maintenance time). Similarly, to 
maintain the uptime-downtime relationship defined by the 
availability requirement, larger TTFs are required. In this case, 
the life cycle cost is increased by the cost of the repair process 
and inventory downtime. 

The availability requirement considered in this subsection is 
shown on Figure 6. This availability requirement has been used 
as an input to the design for availability model. Figures 7and 8 
show the resulting TTF distributions using unscheduled 
maintenance and data-driven PHM. The TTF distributions were 
generated through the process illustrated in Figure 4 and using 
the input data provided in Appendix A. The qualitative 
verification process, of the design for availability methodology, 
is provided in Appendix B. 

By comparing the resulting TTF distributions for 
unscheduled maintenance and data-driven PHM approaches 
(Figure 8), data-driven PHM has allowed a lower TTF 
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Figure 6.  Required availability distribution (input to the model). 



requirement. This means, in this example, using a data-driven 
PHM approach relaxes (relative to unscheduled maintenance) 
the required TTF to meet the imposed availability requirement. 
This is a powerful result from the design for availability 
methodology, since the methodology doesn’t only derive the 
necessary system parameters for a specific availability 
requirement, but it also reflects the impact of a PHM approach 
on the selected system parameters, thus, providing a better 
understanding of the relationship of a PHM implementation 
and the system parameters. Also, the methodology emphasizes 
the fact that a PHM implementation selection should 
incorporate all design, support and logistics parameters. In 
other words, based on the design, support, or logistics 
management, one PHM approach could be more feasible than 
the other.  

Predicting the TTF distribution could be used to avoid the 
contract availability penalties, since a cost penalty could be 
assessed for not fulfilling the availability requirement specified 
in the contract. Also, the minimum allowable TTF information 
could be used to define requirement and provide feedback to 
the design process, since it is more expensive to design LRUs 
with larger TTFs. Finally, explicitly expressing the TTF 
distribution could be used to predict and understand system’s 
behavior.  

Figure 8 shows how practically the TTF results could be 
interpreted. For example, if the reliability (TTF) of each LRU is 
equal or greater than 9,000 operational hours, then the system 
manager would be 87% confident to meet the availability 
requirement under a data-driven PHM approach, and only 8% 
confident to meet the same availability requirement under an 
unscheduled maintenance approach. 

C. Cost Analysis: Unscheduled Maintenance vs. Data-
Driven PHM 
Figure 9 represents the accumulation of the life cycle cost 

per socket for both the data-drive PHM and unscheduled 
maintenance case. The data-driven PHM case resulted in an 
overall lower life cycle cost (mean = $1,973,625) compared to 

the unscheduled maintenance case (mean = $2,469,334). The 
data-driven PHM case requires fewer spares throughout the 
support life of the system. This result is not intuitive. It is the 
unscheduled maintenance approach that would be expected to 
require the minimum number of spares; since the unscheduled 
maintenance events are usually performed upon the actual 
failure of the LRUs, thus maximizing the useful life of the 
LRUs, which results in the minimum number of spares. 
However, the counterintuitive result is primarily due to the 
ability to repair versus replace, i.e., early warning of failures in 
the data-driven PHM case provide an opportunity to schedule 
and perform on-site maintenance events that resulted in 
repairing most LRUs, because of the capability to intervene 
before a complete deterioration of the LRUs, while the system 
is not requested for operation (shorter and less expensive 
maintenance time). In the unscheduled maintenance case, most 
failures were resolved by replacing LRUs rather than repairing 
them.  

In the data-driven PHM sustainment approach case the 
billing due date for the initial and most spare replenishment 
events occurred on a later date than the unscheduled 
maintenance case, therefore the cost of purchasing additional 
spares was smaller because due to the discount rate on money. 
The annual steps seen in Figure 9, are relatively larger for the 
data-driven PHM approach, because: more spares are held in 
the inventory (higher annual spares carrying cost), expensive 
spares (PHM recurring costs are added to LRU purchase price) 
and PHM infrastructure costs are annually accumulated. 
Finally, notice that the total accumulated downtime is constant 
for both cases (imposed by the availability requirement); this 
explains the small steps in Figure 9 for unscheduled 
maintenance case during the replenishment events at 
approximately years 4, 7, etc. (frequent short, i.e., less 
expensive, inventory downtimes), compared to the data-driven 
PHM case large steps at approximately years 7, 12, etc. (less 
frequent longer, i.e. expensive, inventory downtimes). On the 
other hand, the maintenance downtimes generated by the 
unscheduled maintenance case have been larger (unanticipated 
and unscheduled events) compared to the maintenance 

TTF

 
 

Figure 7. Computed TTF distribution for unscheduled maintenance 
and data-driven PHM. 
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downtimes generated by the data-driven PHM case (anticipated 
and scheduled events). 

This cost analysis could have been even more favorable to 
the data-driven PHM case, since the modeling of the cost 
associated with improving an LRU’s reliability (i.e., TTF) was 
not included. Figure 7 shows that, in this example, the 
unscheduled maintenance case required larger TTFs compared 
to the data-driven PHM case to meet the same availability 
requirement (Figure 6). Thus, if the cost of improving TTFs 
was included, then the larger TTFs requirement in the 
unscheduled maintenance case would have cost more, resulting 
in a larger life cycle cost for the unscheduled maintenance 
approach. 

D. Return on Investment (ROI) Analysis 
In this subsection, the return on investment (ROI) of a data-

driven PHM approach relative to unscheduled maintenance is 
analyzed. The total life cycle cost per socket, for a data-driven 
PHM approach, was $1,973,625 (mean), with an effective 
investment cost per socket of  $6,749 (mean), representing the 
cost of developing, supporting, and installing PHM. This cost 
was compared to the unscheduled maintenance approach, 
where the total life cycle cost per socket was $2,469,334 
(mean). Note that the investment cost for the unscheduled 
maintenance policy is by definition zero; since the ROI is 
computed to support an economic justification in investing in 
PHM, as opposite to the unscheduled maintenance case where 
there is no investment (i.e., zero investment) in PHM. A 
detailed description of the methodology of determining ROI for 
PHM systems is out of the scope of this paper, however, an in-
depth discussion of this methodology and its implementation 
are provided in [10]. 

Figure 10 shows the histogram of the computed ROI for 
1000-socket population, using the inputs data provided in 
Appendix A. In this example, the computed mean ROI of 
investing in a data-driven PHM approach for the population of 
sockets was 71.23. This is relatively a large value of ROI, 
which is justified by the small PHM investment cost. Notice 

that the ROI values in Figure 10 become negative.  This means 
that there is a risk that implementing a data-driven PHM 
approach that meets the specified availability requirement for 
the system specified in Appendix A, could result in an 
economic loss, i.e., you could end up being worse off than 
unscheduled maintenance.  Based on Figure 10, this example 

predicts that a data-driven PHM approach would result in a 
positive ROI (cost benefit) with an 87.3% confidence. 

IV. DISCUSSION AND CONCLUSION 

This paper illustrates the application of the design for 
availability methodology to PHM systems. The methodology 
uses an availability requirement to determine the unknown 
system design and support parameters; the approach is general 
and could be applied to any type of system even when 
uncertainties are included. The results presented in this work 
are primarily focused on the system parameters concurrently 
affecting both uptime and downtime. 

A demonstration of the derivation of the reliability (TTF), 
as a parameter affecting both uptime and downtime, is provided 
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Figure 9. (a) Life cycle cost per socket for a data-driven PHM approach. (b) Life cycle cost per socket for an unscheduled 
maintenance approach. 
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Figure 10. Histogram of ROI for a 1000-socket population. 



in detail. The step-by-step demonstration shows how the 
necessary reliability of a system or subsystem could be 
determined, to meet a specific availability requirement. This 
reliability information could be crucial to availability contracts 
and to any system with high availability requirement. 

The reliability analysis, for a data-driven PHM approach 
versus an unscheduled maintenance approach, shows that the 
computed necessary reliability to meet a specific availability 
requirement is explicitly dependent on the PHM approach used 
to maintain the system. The analysis also shows that each PHM 
approach produces a different life cycle. Basically, for the same 
availability requirement a system would require different 
reliability management based on the adopted maintenance 
policy. The “design for availability” application results 
demonstrate not only deriving the system parameters that are 
necessary to meet a specific availability requirement, but also 
provide a critical tool to understand the impact of a PHM 
implementation on each system parameter. 

In the case study example, the PHM data-driven case has 
produced a lower life cycle cost compared to the Unscheduled 
Maintenance case. This has been motivated by: 1) the ability to 
repair versus replace, 2) the number of spares required to 
support the system, and 3) the discount rate on money. The cost 
analysis reflects the complexity of a true understanding of a 
PHM implementation and its impact on the life cycle 
management of the system. Only by adopting a complete 
approach that takes into consideration all system design, 
support and logistics parameters, that a realistic assessment of a 
PHM implementation could be performed. 

The results presented in this paper and previous work [8] 
are focused on deriving single system parameters that are 
necessary to meet a specific availability requirement. However, 
the design for availability methodology could be extended to 
address the concurrent determination of multiple system 
parameters; which would involve two cases. First case, if 
system parameters are dependent, in other words if an explicit 
relationship between these unknown system parameters could 
be determined, then the application of the methodology is 
straightforward and sufficient to solve for the unknown 
dependent system parameters. Second case, if the system 
parameters are independent, then the inclusion of an 
optimization approach might be required at the conclusion of 
the 7th step (Section II) of the methodology; since the 
established relationships that are used to solve for the unknown 
system parameters might have more unknowns than the actual 
number of derived equations. However, even in this case (i.e., 
multiple independent unknown system parameters), the 
methodology is still efficient in terms of reducing the large and 
complex optimization “search-based” problem, where every 
generated set of system parameters may or may not satisfy the 
availability requirement; to a basic “non-search-based”  
problem where the unknown system parameters have to be 
optimized to satisfy one single relationship which is already 
predefined by the means of the design for availability 
methodology.  
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APPENDIX A – DATA SUMMARY FOR CASE STUDIES 

This Appendix represents a simplified version of the case 
study that appeared in [10]. This Appendix provides model 
inputs and assumptions that are used for the example analyses 
presented in Section III. Only the most relevant inputs for this 
specific application of the design for availability model are 
provided here; for a more detailed inputs data refer to [10]. The 
LRU used in this example is an avionics multifunction display 
(MFD). The implementation costs are summarized in Table 
A.1. The discount rate on money used was 0.07 (constant over 
time). 

The cost per hour out of service is $500 and $5092 for 
scheduled maintenance and unscheduled maintenance 
(assuming during mission failures) respectively. However, it is 



assumed that if the multifunction display (MFD) is not 
functional and the inventory is out of spares, thus the aircraft is 
grounded for more than 24 hours waiting for spares 
replenishment; then the value of an hour out of service drops to 
10% of the cost of the original aircraft being out of service. The 
operational profile is summarized in Table A.2 [10, 11], and a 
20 years support life was chosen based on [12]. 

Table A.1. Implementation Costs 
Frequency Type Value 

Recurring Costs Base cost of an LRU 
(without PHM) $25,000 per LRU 

Recurring Costs Recurring PHM cost 
$155 per LRU 
$90 per socket 

(CREC) 

Recurring Costs Annual Infrastructure $450 per socket 
(CINF) 

Non-Recurring 
Engineering PHM cost $700 per LRU (CNRE) 

  

Table A.2. Operational Profile 
Factor Multiplier Total 

Support life: 20 years 2,429 flights per year  48,580 flights over 
support life 

7 flights per day 125 minutes per 
flight 

875 minutes in flight per 
day 

45 minutes 
turnaround between 

flights [13] 

6  preparation periods 
per day (between 

flights) 

270 minutes between 
flights/day 

 

Table A.3. Spares Inventory 
Factor Quantity 

Initial spares purchased for each socket 3 

Threshold for spare replenishment � 1 spares in the inventory 
per socket 

Number of spares to purchase per socket 
at replenishment 2 

Spare replenishment lead time 18 calendar months  

Spares carrying cost 10% of the beginning of year 
inventory value per year 

Billing due date when ordering 
additional spares 2 years from purchase date 

Table A.3 summarizes the spares inventory (per socket) 
assumptions. This includes the spares carrying costs, which are 
incorporated into the LRU recurring costs. 

APPENDIX B – MODEL VERIFICATION 

This appendix represents a qualitative verification of the 
design for availability methodology. The following three steps 
comprise the verification process: 

1. Using the availability distribution requirement as an input to 
the design for availability model, determine the allowable 
minimum TTF distribution. 

2. Use the TTF distribution generated in step 1 as an input to 
the existing PHM ROI simulation (described in Section III 
of this paper) to predict an availability distribution as an 
output. 

3. Compare the availability distribution input requirement 
(used in step 1) to the availability distribution determined as 
an output (in step 2) – they should be equivalent. 

The availability requirement considered in this Appendix is 
shown in Figure B.1a; which has been used as an input to the 
design for availability model. Figures B.2a and B.2b show the 
resulting TTF distributions using unscheduled maintenance and 
data-driven PHM respectively. In order to qualitatively verify 
the methodology, the TTF distribution (Figure B.2a) was used 
as an input to the PHM ROI tool discussed in Section III of this 
paper, while using an unscheduled maintenance approach. The 
PHM ROI tool used the TTF distribution along with the other 
inputs in the Appendix A and generated a resulting availability 
distribution (Figure B.1b). The two availability distributions 
(Figures B.1a and B.1b) are not expected to be absolutely 
identical (since this is a stochastic solution), but the means and 
standard deviations are very similar. 
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Figure B.1.  (a) Required availability distribution (input to the model). (b) Availability distribution generated (output of the discrete event 
simulator) using the computed TTF (Figure B.2a) for unscheduled maintenance. (c) Availability distribution generated (output) using the 

computed TTF (Figure B.2b) for data-driven PHM. 
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Figure B.2.  TTF distributions (model outputs) required to satisfy the availability requirement in Figure 6a for various 
maintenance approaches.  (a) TTF distribution for an unscheduled maintenance approach. (b) TTF distribution for a data-

driven approach. 


