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Abstract

This paper describes a prototype of a discrete event simulator - Y4 (Yield Forecaster) - capa-

ble of simulating defect related yield loss as a function of time, for a multi-product IC manu-

facturing line. The methodology of estimating yield and cost is based on mimicking the

operation and characteristics of a manufacturing line in the time domain. The paper presents

a set of models that take into account the effect of particles introduced during wafer process-

ing as well as changes in their densities due to process improvements. These models also

illustrate a possible way of accounting for the primary attributes of fabrication, product and

failure analysis which affect yield learning. A spectrum of results are presented for a  manu-

facturing scenario to demonstrate the usefulness of the simulator in formulating IC manufac-

turing strategies.
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1. Introduction

The cost of a new VLSI fabrication line producing several different products using several

hundred steps is now estimated to be close to a billion dollars. In the past years both cost and

complexity of manufacturing have been observed to increase exponentially and there has

been no indication that this trend is going to slow down [1]. This trend has been further fueled

by the need to produce faster, more complex and higher quality ICs, which demands precise

fabrication and a nearly particle-free environment. This upward trend places the industry at

an even higher risk. Thus, semiconductor manufacturers must be able to produce quality

products with minimum achievable cost to stay ahead of their competition.

Optimum exploration of cost-revenue trade-offs is difficult involving yield forecasts, and

cannot be realized unless it is based on adequate experimental or simulation models. A few

researchers have investigated yield learning in a semiconductor manufacturing line [2, 3, 4,

5], but the models applied do not capture the mechanics of yield learning itself. As a result,

methodologies to perform cost versus yield trade-off analysis over time do not exist at present.

To address this need, we have developed a new methodology to predict defect-related yield

which takes into consideration not only the operational aspects of manufacturing, but also the

process of yield learning. Models have been developed to estimate yield and cost as a function

of time. The goals of this paper are to present a tool -Y4 (Yield Forecaster) - which imple-

ments this methodology, and to illustrate Y4’s use in developing manufacturing strategies.

The structure of this paper is as follows. In the next section, we discuss the characteristics

of a modern manufacturing line, focussing on the yield learning process. In section 3 we derive

a methodology to simulate defect-related yield versus time curves for a manufacturing pro-

cess. Section 4 briefly deals with the implementation of the methodology and models imple-

mented in Y4. A spectrum of simulation results are presented in Section 5 to illustrate the

relevance of the cost and yield models applied.

2. Yield Learning in VLSI Fabrication

The new yield modeling philosophy postulated in this paper is based on the following ratio-

nale [6, 7]. A manufacturing process can be viewed as consisting of two components: product

fabrication and failure analysis, as illustrated in Figure 1. In order to capture the essence of

the mechanism of yield learning, it is necessary to take a closer look at the key events in each

of these components.
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A. IC Fabrication

The rate of yield improvement strongly depends on the process cycle time which, in turn,

depends on the operational aspects of fabrication. IC fabrication can be viewed as the process

of moving wafers through a sequence of equipment as defined by the process recipe. The

movement of wafers in a fabrication line is governed by a number of rules which aim to reduce

the time spent in waiting between steps [e.g. 8]. Hence, yield learning cannot be analyzed

unless all process elements deciding the rate of wafer movement are well understood and

modeled. These elements include product mix, volume, operational rules, etc. Detailed anal-

ysis of wafer scheduling in a fabrication line can be found in [9]. In this section, we focus on

yield related attributes of fabrication line.

In modern processes particles and contamination are mainly introduced by processing

equipment. These particles or contaminants can get deposited on the wafer’s surface and,

depending on the particular processing step, some of them can get transformed into deforma-

tions of IC features referred to as defects. The number and size of defects formed is a function

of numerous complex interacting phenomena that take place during fabrication. Depending

on their type, size and location on the IC structure, some defects may result in opens in elec-

trical nets and others in shorts between electrically distinct nets in the circuit. The electrical

malfunctioning of an IC in presence of such an open or short is referred to as a fault. In gen-

eral, the transformation of contamination to defects, and ultimately to faults, depends on both

manufacturing and product attributes. Hence, a useful model of yield learning cannot be built

Figure 1. Structure of a IC manufacturing operation.
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without an adequate understanding of the major mechanism of contamination deposition and

the associated contamination-defect-fault relationship   [10].

B. Failure Analysis

Typically, improvement of process quality, i.e. yield increase, is achieved in two different

ways. One is contamination control and the other is via failure analysis. In this paper we focus

on the latter. For failure analysis, a small fraction of wafers are selected (after probe testing)

using some sampling rules. A simple sampling rule is, for instance, to select the wafer with

the highest number of failed ICs. More complex sampling rules can be used when more infor-

mation on the nature of the failure can be extracted from the electrical testing results.

Once a set of defective die is chosen, an attempt is made to diagnose the cause of failure in

each selected die. Diagnosis is usually formulated by performing defect localization and iden-

tification, analysis of the particle causing the defect, and identifying the set of equipment

which could be the possible source of the particle. Of these, the first step is the most time con-

suming and uncertain. The particle analysis step can also be time-consuming and require

very expensive equipment.

Defect localization is accomplished through direct observation methods such as optical,

scanning electron, and transmission electron microscopy [11, 12]. These methods, however,

have several drawbacks. First, these techniques are useful only when the portion of the die

which needs to be searched is fairly small. Second, defects which are in lower layers of the IC

(polysilicon for example) may be masked by the upper levels. Use of diagnostic testing to

obtain tighter bounds on the neighborhood of the defects [15] is very promising and in the

future may vastly improve defect localization.

Once a defect is localized, one can usually identify the step which introduced the particle

causing the defect. In cases where this is not possible, more elaborate techniques (such as

scanning electron microscopy (SEM) [13], selectively stripping away IC layers [14], or cross-

section analysis using TEM) can be used to identify the nature or chemical composition of the

particle.

The step that follows failure analysis is that of taking corrective actions. Observe, however,

from a yield learning perspective, corrective actions are justifiable if a significant number of

defects of the same type are detected. Only then must the suspect piece of equipment be

cleaned or repaired, or process modifications be applied.
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3. Modeling the Yield Learning Process

From the above short summary, it is evident that the yield learning process should be

described as a sequence of events starting with the introduction of particles, followed by

detection of defects and identification of their source, and concluding with eliminating the

source of particles. The rate of yield learning, therefore, depends on:

1. The relationship between particles, defects and faults;

2. Ease of defect localization which in turn depends on:

a. size, layer and type of defect,

b. level of “diagnosability” of the IC design and,

c. probability of occurrence of catastrophic defects;

3. Effectiveness of the corrective actions performed;

4. The timing of each of the events mentioned above;

5. Rate of wafer movement through the process.

All of the above factors must be modeled in order to build an yield learning simulator.

In order to describe the yield as a function of time, let us first concentrate on a single prod-

uct manufacturing line. Let us also assume that there exists only one type of defect originat-

ing from a single source (a piece of equipment) of particles. This simple case suffices to capture

the essence of the yield learning process.

The hypothetical yield versus time curve for the above scenario resembles the staircase

function shown in Figure 2. Here, Tf is the time required for analysis and detection of the fail-

ure mechanism leading to process intervention. Te is the time needed for a process correction

which decreases contamination levels, and the time required for the new process parameters

to be effective. Tr is the interval between the time process correction is made and the time

change in yield of the fabricated wafers is observed. The total time required for yield change

to occur is Tc = (Tf + Te + Tr) and the net change in yield is Yc. The value of Yc is determined

by the new level of contamination.

Estimating Tr is equivalent to estimating the cycle time for a process, albeit partially, start-

ing from an intermediate process step where the correction is made until the last step of the

process. Thus, it is the sum of the raw processing time (RPT) and the queuing time that

results when wafers must wait between process steps. One of the major contributors to the

queuing time is the downtime of the equipment. Note that the time factor Te may also con-
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tribute to the equipment downtime depending on the outcome of failure analysis. Tf, the time

needed to detect and localize the defect, depends on a number of attributes associated with

IC design, defect and failure analysis process. The change in yield, Yc, on the other hand,

depends on the correctness of the diagnosis and the efficiency with which the contamination

rate can be reduced as a result of the corrective actions.

 Note that Figure 2 depicts yield improvement cycles for only one type of defect originating

from one source. In reality, there will be a number of such cycles overlapping in time with each

other. The yield learning curve for a product is, thus, a combination of all such individual

overlapping learning curves.

From this basic model of the yield learning process, it is clear that the primary capability

of the simulator must be to keep track of the sequence of events in a factory [e.g. 16]. The sec-

ond requirement for the simulator is the ability to simulate the movement of the wafers in a

fabrication line, and representing such entities as product, process recipes, equipment, per-

sonnel and operating rules. The specific modeling aspects have been dealt with in detail by

others [9, 16] with the exception of models for evaluating Tf and Yc. Further, to achieve the

capability of performing cost revenue trade-off studies, the simulator must be able to take into

account the capital and the operating costs of the fabrication line and failure analysis facility.

Ceratin key aspects of modeling yield loss, failure analysis, corrective actions and cost are dis-

cussed next.

Figure 2. Key events in yield learning process.
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A. Yield Modeling

The primary aim in yield modeling is to classify each die on a wafer as fault-free or faulty

so that yield can easily be estimated by evaluating the ratio of good die to the total number

of die on a wafer. One can simulate yield in a Monte Carlo manner but for reasons of practi-

cality it is necessary to develop simpler models suitable for an event driven system.

In attempting to develop a simpler yield model, the first step is to choose a model for the

particles that may ultimately cause IC failure. We assume that particle types are uniquely

characterized and associated with their source i.e. the generating equipment (however, each

source can generate more than one type of particle and several sources can generate the same

type of particle). A source and particle type pair will be referred to as a disturbance type. In

the simulator described in this paper, each disturbance type is assumed to generate two or

three dimensional particles of a certain size, Rc, and the number of particles on a wafer is

given by Nc. The distributions of Nc and Rc are assumed to be independent of each other and

modeled as gaussian and polynomial distributions, respectively [17, 18]. The particular form

of polynomial distribution for defect size is K/Rp, where K is a constant, R, the defect size and,

p, the exponent is extracted experimentally [18]. It is also assumed that the particles are dis-

tributed uniformly on a wafer.

The next important modeling issue is the contamination-defect-fault relationship. This

relationship is modeled in two steps - modeling the transformation of contamination to defect

and then defect to fault. In modeling particle to defect transformation, one has to consider pos-

sible changes in defect size. If the particle size is Rc, then the defect size, Rd is given by Rd =

CcRc, where Cc is a given constant for a given process step. Defect to defect transformation

(three dimensional defect propagation) and removal of defects (due to layer polishing, wafer

cleaning, etc.) are modeled in a similar manner.

Defect to fault mapping has been extensively studied in the past. There are two distinct

methods, one uses Monte Carlo techniques [19] and the other uses models based upon the crit-

ical area concept [20, 21]. Monte Carlo techniques are excessively time-consuming, whereas

models based on critical area estimate only the average yield. Neither method directly

answers the question: given the size, location and layer of a defect on a wafer, what is the

resulting fault, if any? We have used a variation of the critical area concept which is described

in detail in [7]. It is based on the fact that if defects are assumed to be uniformly distributed,

then one can avoid assigning a location to the defects (which can increase the computational

complexity). Instead, one can assign a probability that a defect is located inside the critical
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area for that defect and a fault type. An important feature of this concept is its ability to

model, with high accuracy, the sensitivity of a layout design to various kinds of defects.

B. Modeling Failure Analysis Process

In modeling the failure analysis process, the objective is to estimate the time required to

identify a subset of equipment responsible for causing a die to be defective. Here, we present

some of the key features of such a model.

Failure analysis is modeled as a three step process involving sampling of wafers, multi-step

defect analysis and assignment of the dominant cause of failure. In the sampling step, those

wafers are selected for analysis that have at least a given number of defective die. To avoid

overloading of failure analysis equipment, the above rule is combined with the requirement

that wafers can be sampled only when the number of wafers in the input queue of failure anal-

ysis is less than a certain given value. Hence, timing of wafer selection is a function of the rate

of wafer movement (through fabrication steps) and the level of wafer defectivity.

We are assuming in this paper that defect analysis may require a multi-step procedure. To

estimate the time required at each step of the defect analysis process, it is useful to introduce

a diagnosability measure, m, with a value between 0.0 and 1.0 defined for type of fault in each

product. (A value close to 1.0 indicates that the fault is easily diagnosable). Suppose that at

each step, starting with an initial value of mi, a final value of mf is achieved in time tf. One

possible form of the function is given by:

(1)

where ed represents the efficiency of the diagnosis process and is a parameter which depends

on the analysis equipment. The above model of the diagnostic process implies that more the

time spent on analysis, the higher are the chances of detecting the cause of the fault.

It remains now to define a model for estimating the initial diagnosability for the first step

of the analysis. It is assumed that each fault for a product is characterized by:

1. An estimate for the area on the chip where the defect may be present, As (The maxi-

mum value for As is Achip or the total area of the chip).

2. The size of the defect, R.

3. The layer n, in which the defect is manifested, n = 0 for the top layer.

mf 1.0 1.0 mi–( )e
edtf–

–=
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Using these parameters one can estimate the initial diagnosability by the following equation:

(2)

where a, b, and c are positive constants which capture the relative importance of each of the

three attributes defined above. This model also provides the ability to capture differences in

products which are affected by the same kind of defects. However, the model implicitly

assumes that the source is correctly identified in the event that the diagnosis is successful. In

reality, however, diagnosis can be incorrect introduced by ambiguity and/or lack of

information. In fact, correct diagnosis may itself take several learning cycles. Ambiguity

arises from the fact that many different sources of particles may cause the same defect or

result in the same faulty signature. Thus, this can be taken into account by properly

formulating the particle to defect to fault mapping information. Likewise, incorrect

information can be modeled by introducing false mapping information.

Another component of defect analysis time is the queuing time which is governed by equip-

ment availability and the scheduling rules applied to control wafer flow. We assume a first-in-

first-out rule. Further, a maximum time limit for analysis is also assumed in order to avoid

long waiting times for incoming wafers. In reality, queuing times can be long because of high

priority wafers or other operational reasons.

C. Modeling Corrective Actions

The main objectives in modeling corrective actions are to:

a. decide when a piece of equipment needs to be repaired or cleaned,

b. decide when the equipment can be taken off-line (if required), and

c. estimate the new value of parameters modifying particle generation model.

The first requirement can be achieved by keeping a count, Esuspect, of the number of times a

piece of equipment is held responsible for a fault in the die fabricated. Note that several

equipment can be held responsible simultaneously. When the count exceeds a predefined

threshold, Ethresh, the particular piece of equipment needs to be cleaned. The second

requirement is met by using the rule to wait for the next scheduled maintenance period to

perform the cleaning operation if the estimated waiting time is less than a predefined interval

of time.

mi 1 a n⋅–( ) 1 b As⋅ c As R⋅ ⋅+–( )=
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Modeling considerations for the third and most important factor - the change in model

parameters of particles must be discussed in more detail. In our approach it is assumed that

both the number of particles per wafer and the relative occurrences of different particle sizes

change as a result of cleaning. It is further assumed that the new distribution of the number

of particles, Nc, is a normal distribution with a new mean, mnew, and standard deviation, σnew,

given by:

(3)

where km and kσ are given constants between 0.0 and 1.0. A value of zero indicates that the

operation of cleaning removes the source entirely. Similarly, we assume that the distribution

of particle size, Rc, is still a polynomial distribution with new exponent, pnew, given by:

(4)

where pdiff is a positive constant. This model implies that a change in particle number is

independent of any change in size distribution. The other important assumption in our model

is that cleaning or repairing changes particle (by a fixed factor) characteristics so as to

continuously reduce the rate of occurrence of defective die. Any increase in particle count with

time can be taken into account by modifying the particle model by adding a time component.

Also, it is quite likely that actual change in particle characteristics itself may be a randomly

varying quantity.

In the above modeling consideration we have ignored the fact that often instead of equip-

ment, process steps or materials used in a step may be held responsible for defects. A simple

variation of the above model can be used to model application of corrective action to process

steps. Difference will arise in the time taken to make the correction.

D. Cost Modeling

One of the accepted industry standards for estimating manufacturing cost is the cost-of-

ownership model developed by Sematech [22]. In this model, the focus is on estimating the

effective contribution of equipment and other resources to the wafer cost. This analytical

model requires prior estimates of attributes like uptime, throughput yield, die yield, cycle

times, etc. These parameters could be extracted by direct observation in a factory with vary-

ing degree of confidence, but cannot easily be extrapolated to an alternate scenario. The cost

mnew mold km⋅=

σnew σold kσ⋅=

pnew pold pdiff+=
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model described in [23] gives a direct estimate of wafer cost arising out of equipment usage

(activity) in a multi-product fabrication line. In that model wafer cost is defined as being com-

posed of two components: the first being the direct equipment usage (based on active usage of

equipment by a given product) and the fraction of time during which a piece of equipment is

not processing any wafers. The focus is on "fair" allocation of the cost incurred when equip-

ment is not processing any wafers in a multi-product facility. Costs arising out of material/

energy usage, equipment service and operators are also taken into account. In this paper, we

use a variation of the model to estimate the wafer cost and then combine the wafer cost with

the wafer yield estimates to model the die cost [24].

4. Structure and Implementation of Y4

The methodology and the models for yield learning described in the previous section have

been implemented as a software tool called Y4 (Yield Forecaster). Figure 3 shows the overall

structure of the Y4 framework. The heart of the simulator is the event handler which com-

municates with six modules: the wafer movement simulator (WSIM), the yield simulator

(YSIM), the failure analysis simulator (FASIM), the in-line particle monitor simulator

(PSIM), the cost simulator (COSIM) and the probe tester simulator (TSIM). The operation of

the event handler and these six modules can be controlled through the simulation control

unit. The user can implement different models using the toolkit of functions provided for

accessing and modifying the common database for all the modules and the event handling

routines. A basic user interface is available to read input files for the models, output the sta-

tistics gathered and customize the simulation control strategy.

The models described in the previous section have been implemented as internal models of

the submodules (WSIM, etc.). WSIM is similar to the commercial fabrication line simulator

ManSim [25], although the current implementation models only a subset of ManSim’s oper-

ating rules and conditions. On the other hand, the number of external events that can be

defined in ManSim is limited. Thus, it was considered necessary to implement Y4 with the

ability to define events for particle introduction (YSIM), failure analysis (FASIM) and correc-

tive actions (YSIM).

Discussion of the models for particle monitor simulation (PSIM) and the wafer test simula-

tion (TSIM) are outside the scope of this paper. A description of the models and the results

obtained are presented in [7]. In this paper, we focus on the other four submodules - WSIM,

YSIM, FASIM and COSIM.
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5. Illustrative Simulation Results

In this section, two kinds of results are presented. First, results of simulations replicating

some of the known phenomena in a manufacturing line are described. Cycle times and

throughput analyses of a single and a two product manufacturing line are presented. Subse-

quent simulation results illustrate the general difference in wafer cost for single and two

product factories. These examples illustrate the basic functionality of Y4. Then, illustration

of capability to handle non-trivial trade-offs are presented through yield learning simula-

tions. The impact of the capacity of the failure analysis facility on the learning rate is pre-

sented. The impact on cost of a sudden degradation in yield caused by a sharp increase in

particle rates in one piece of equipment is analyzed. Finally, we consider the impact of ease

of diagnosability of a product on the yield learning rate.

The minimum duration of simulation in each case is one year with a 12 week warm-up

period. The process recipes, equipment, and cost data used in these examples were taken from

an existing manufacturing line. Operators in the manufacturing line were not simulated, and

thus, any variability in observed cycle times and cost is solely due to the temporary unavail-

ability of equipment.

Figure 3. Top level structure of the Y4 framework.
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In the examples that follow, we will primarily use a 0.5 micron 3 metal CMOS process rec-

ipe. Due to its proprietary nature, data pertaining to cost of equipment, etc., has been scaled

appropriately. The process recipes had to be reduced for the same reason. The modified recipe

consists of 145 steps using 183 pieces of equipment for a 2496 wafer starts per week (WSPW)

capacity factory (a medium sized factory). The lot size is 24 wafers and thus the line capacity

is 104 lots per week. In a few examples, we will also use a 0.5 micron, 2-metal, trench capac-

itor DRAM process. After preprocessing, the recipe for this process consists of 175 steps using

214 pieces of equipment also with a capacity of 2496 WSPW. The raw processing times are

302 hrs and 427 hrs for the CMOS and DRAM processes, respectively. All of the above pro-

cesses and cost data are good approximations of medium size real life manufacturing opera-

tions.

A. Cycle Time Simulation
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The examples presented in this section illustrate the capability of Y4 to mimic factory oper-

ations and timing. In order to validate Y4, cycle time simulations were also conducted using

ManSim, and the two were found to be within 1% of each other (for details see [7]). Figure 4

shows the average cycle time (in minutes) versus the wafer start rate for the two single prod-

uct factories manufacturing CMOS and DRAM products respectively.

In a multi-product factory, the scheduling of wafers in the line is more complex; hence, the

cycle time of each product can be affected by those of other products. An example of one of the

many factors that affects cycle time is the proportion of each product being manufactured (i.e.

product mix). To illustrate that Y4 can reflect this dependence, a two-product factory was

designed such that the designed capacity is 832 and 1664 WSPW (for a total of 2496 WSPW)

for the CMOS and DRAM products, respectively. This factory has 222 pieces of equipment and

has been derived from the original DRAM factory with minor modifications. The wafer start

rate of each product was varied around its designed point (i.e. 33% CMOS product) such that

the total wafer start rate was 2496 WSPW. The proportion of CMOS product was varied from

10% to 90% of the total wafer starts.

Figure 5 shows the cycle time of each product as a function of the percentage of CMOS prod-

uct. Observe that the stable region is centered around the design point of the manufacturing

line. In this region, the cycle time of CMOS product increases slowly as its proportion is

Figure 4. Cycle time and throughput comparison of DRAM vs. CMOS factories.
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increased. The cycle time of DRAM product, on the other hand, decreases slowly in this range.

Since this factory is derived from the DRAM line, the characteristics of the line are dominated

by the DRAM process. Hence, the cycle time of the CMOS product increases as its proportion

is raised. In the unstable region, cycle times of both products increase rapidly since the avail-

able capacity is not enough to fabricate the larger proportion of CMOS product in the line. In

general, one can expect to encounter unstable operating conditions on both extremes around

the design point.

B. Cost Analysis of Fabrication Line

In this section, results of wafer cost estimates are presented for the manufacturing lines

described in the previous section. For the CMOS factory, the minimum value of wafer cost

attained is $2745 (at designed capacity). For the DRAM product, the minimum wafer cost

obtained is $3272. The DRAM cost is higher mainly because the process requires expensive

equipment to define the trench capacitors and executes more lithography steps.

Figure 6 shows estimates of wafer cost as a function of the product mix for the two-product

factory presented earlier. Increasing the proportion of CMOS product decreases its cost for

the same reason as in a single product factory - better utilization of the capacity for the equip-

ment used in the CMOS process. Further, the cost incurred due to the idle times of equipment

used solely by one process is allocated to the corresponding product only - an artifact of the

Figure 5. Cycle time of two product factory (CMOS and DRAM).
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“fair” allocation cost model. This effect is more pronounced for the DRAM product since it

requires specialized equipment (for trench capacitors and epitaxial layers) not required by

the CMOS process.

In the unstable operating region, the wafer cost for both products increases as the propor-

tion of CMOS product is increased. The cost of CMOS product increases because of starvation

of non-bottleneck equipment in spite of the fact that more wafers are being produced. In fact,

the throughput of the CMOS product is no longer directly proportional to the input wafer

start rate as one may expect. The cost of DRAM product, on the other hand, increases dra-

matically mainly because of under-utilization of the “DRAM only” dedicated equipment.

Notice that a similar effect is not apparent for the CMOS product at low wafer starts since

the CMOS process does not have any significant (expensive) equipment dedicated to it.

Almost all the process steps of CMOS are shared by the DRAM process leading to nearly uni-

form utilization of the shared equipment.

C. Yield Learning Analysis

In order to illustrate the capability of Y4 to simulate yield learning curves, the fabrication

line for the 0.5 micron 3 metal CMOS process was used. It was assumed that wafers are 6

inches in diameter which can accommodate 110 chips of 1.4 cm2 size each.

Defects in the polysilicon and the three metal layers were considered as main yield detrac-

tors. Defects in the polysilicon layer were assumed to be introduced during the poly deposition

Figure 6. Wafer cost as a function of product mix.
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step. Defects in metal layers were assumed to be caused by particles generated at the common

sputtering step. It was also assumed that these defects result in shorts in their respective lay-

ers. The critical area for shorts, as a function of defect size, for each defect type was derived

by scaling results obtained from several CMOS designs in order to mimic a microprocessor

like product [21].

The initial exponent, p, of the particle size distribution was taken to be 2.0. The initial mean

and variance of the particle number distribution was set in a such a way that the total initial

yield was less than 10%. Note that the initial yield also depends on the critical areas assumed

for each of the defect types.

Wafers were sampled for failure analysis when there were more than 30 defective die on a

wafer and when there were fewer than 3 wafers waiting to be analyzed. The failure analysis

was simulated as comprising five steps: observation under microscope, observation with

SEM, stripping layers (if required), cross section analysis and spectroscopic analysis (Wave-

length Dispersion Spectroscopy -WDX, Energy Dispersion Spectroscopy - EDX, etc.). These

steps were carried out in sequence and the time required at each step was calculated using

Eqns. 1 and 2. The parameter ed for each equipment was chosen to reflect the time expected

to be spent at each of these steps. The maximum time required to analyze 30 defects in the

top metal layer was about 2 weeks (not considering the queueing time). The value of search

area, As (Eq. 2), for each product under consideration was assumed to be defined by a distri-

bution given as a table ranging from 0.0 to 1.4 cm2 (chip size) with a mean at 0.2 cm2.

Assignment of the equipment responsible was accomplished by incrementing the variable

Esuspect by 1 for the piece of equipment responsible for the defect. For the rest of the equiva-

lent equipment, the increment value was 0.5. Corrective actions on a piece of equipment were

deemed necessary when this count exceeded 20 (Ethresh). The equipment was taken off-line

for cleaning as soon as it had finished processing the current lot of wafers. The value of pdiff

was set to be 0.02 for each type of particle, and km and kσ (Eq. 3) were set to be 0.95.

Figure 7 shows an example of the trend plot of total die yield for each lot. Note that the yield

starts increasing only after about 15 weeks. This is because failure analysis is not conducted

for the first 10 weeks in order to let the simulated fabrication line settle into an equilibrium.

The total period of simulation is 75 weeks and the yield values shown in the figure are for

approximately 7500 lots. Note that yield learning rate is quite high. This is because only four

types of defects are considered and that the failure analysis turnaround time is relatively

quick (an artifact of simple FIFO scheduling rule used).
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The variance in yield is observed to increase (Figure 7) as the yield ramps up and then

decreases as the rate of yield increase drops. This reflects the variance of a binomial distribu-

tion which is highest when yield is 0.5 (i.e. variance = npq, where, n is the number of samples,

p is probability that a die is good and q = 1-p). This is because the probability of occurrence of

a defective die on a wafer is nearly constant in a short period of time and thus the total num-

ber of defective die on a wafer must follow a binomial distribution. In reality, the variance in

yield is likely to be much larger than the value predicted by our model because of noise in

other process parameters (like etch rate, film thickness, etc.). Such factors are not currently

modeled in Y4.

The weekly average of the yield trend plot is shown in Figure 8 along with the yield of the

poly-silicon and the metal 3 layers. Observe that the yield of the metal 3 layer starts to

increase almost right after failure analysis is initiated (after the 10th week). The polysilicon

layer yield, on the other hand, starts to increase only after another 15 weeks (around 25th

week). This reflects the fact that polysilicon defects are more difficult to detect than metal 3

defects which are nearer to the surface of the chip. Further, the yield of metal 3 is low enough

in the first few weeks of failure analysis that the resources are kept busy analyzing samples

for metal defects. Polysilicon defects are, in effect, ignored until the metal 3 yield reaches

about 0.65. However the rate of yield learning for the polysilicon layer is higher than metal 3

since the increased availability of samples with polysilicon defects compensates for the

decreased diagnosability of these defects.

Figure 7. Example of simulated yield learning curve.
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Figure 9 shows the results of yield simulation when the number of each type of failure anal-

ysis equipment is doubled. In addition to the obvious increase in the yield learning, two more

effects are apparent. First, the polysilicon layer yield starts to increase around the 20th week,

which is about 5 weeks sooner than in the previous case. Secondly, at this point, the metal 3

yield is higher than that in the earlier case (0.73 instead of 0.65). There is enough leftover

capacity to allow for allocation of resources to the detection of polysilicon defects while the

metal defects are being analyzed. Availability of more resources enables metal defects to be

diagnosed more quickly.

D. Impact of Sudden Change in Yield on Learning Rate and Cost

In the previous section, we have implicitly assumed that changes occurring in particle rates

and size distributions due to cleaning the corresponding equipment causes an improvement

in yield. However, they may possibly change in such a way as to degrade the yield. This could

be due to some internal disturbance such as imprecise processing causing more particles to

be released. Here, we consider the result of such a change occurring in one of the sputtering

tools. The change causes the metal yield to degrade. Specifically, at the end of 30th week, the

mean of the particle number distribution for one of the seven sputtering tools is assumed to

increase by a factor of five.

Figure 10 shows the result of the simulation illustrating the yield trend plots. Observe that

the net yield learning rate has decreased compared to the result shown in Figure 8. The

Figure 8. Yield learning curves for CMOS product.
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increase in metal defects causes metal yield to drop first. After a certain delay, failure analy-

sis catches up with the increased number of defective die with metal defects, and metal yield

starts to increase again. But at the same time, the polysilicon yield learning rate drops

because failure analysis resources are mostly consumed in detecting metal defects.

Figure 11 illustrates a similar situation but with double the failure analysis capacity. As

expected, the yield learning rate is higher than in the simulation shown in Figure 10. But

there is an important difference between the two sets of yield learning curves. In the latter

Figure 9. Yield learning with double failure analysis capacity.

Figure 10. Yield learning with sudden increase in defect release rates.
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case, the yield learning rate of polysilicon layer remains essentially unaffected. This result

again illustrates that the extra capacity helps to perform analysis on polysilicon defects in

spite of higher occurrence of defective die with metal defects. Also, at the time the yield prob-

lem occurs, the metal yield is high enough that the number of defective die sampled for anal-

ysis is already low. Thus, the failure analysis facility has little trouble absorbing the relatively

small increase in the number of defective die with metal defects.

It is interesting to compare the two manufacturing lines - one with a normal capacity and

the other with doubled capacity of failure analysis - from the perspective of sensitivity

towards yield degradation. Table 1 summarizes the results for the two manufacturing lines.

The cumulative number of good die for the simulation period and the average cost are com-

pared. Notice that, as it should be expected, the manufacturing line with more failure analy-

sis capacity is much less sensitive to the yield problem. Thus, any loss incurred due the yield

problem illustrated earlier is appreciably reduced in the second manufacturing line.

Finally, for argument’s sake, assume that all the ICs produced can be sold at $100 each. The

last two rows of Table 1 show the estimated profit in absolute value and as a percentage of

the total investment, respectively. Comparing the case where there are no yield disturbances,

Figure 11. Effect of increased failure analysis capacity in the event of yield degradation.
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one can see that an extra investment of $38M in failure analysis facility increases the profit

by $355M.

E. Yield Learning Dependence on Product Design

Learning rate can also be improved by appropriately designing a product for diagnosis. In

this section, the two product factory designed for CMOS and DRAM processes presented ear-

lier will be used to illustrate the dependence of yield learning rate on product attributes. This

factory is designed to operate for 832 and 1664 WSPW for the CMOS and DRAM products,

respectively. The same defect types, i.e. polysilicon and metal shorts, are considered as in pre-

vious cases. The die size is also assumed to be the same as for the CMOS product, i.e. 1.4 cm2.

However, several important differences in the attributes of the CMOS and DRAM products

are assumed. These are:

1. Defects in DRAM are more diagnosable than in the CMOS product. This is modeled by

assuming a smaller mean search area, As, for DRAM, 0.08 cm2, than CMOS, 0.5 cm2

(variances are 0.0002 and 0.008).

2. DRAM is more sensitive to polysilicon shorts than CMOS product. Sensitivity to metal

shorts in both products is assumed to be similar.

Normal capacity Double capacity

Undis-
turbed

fab

With
yield

degra-
dation

%
change

Undis-
turbed

fab

With
yield

degra-
dation

%
change

Number of
good die (in
million $)

7.62 5.81 -23.75 11.54 10.49 -9.1

Cost of die ($) 72.52 94.92 +29.92 51.13 56.90 +11.28

% of cost from
failure analysis

5.47 5.32 -2.74 11.5 12.44 +8.17

Profit (in mil-
lion $)

209 30 -85.6 564 452 -19.9

Profit (% of
investment)

37.8 5.4 - 95.6 75.7 -

Table 1. Cost comparison.
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3. There are two metal levels in the DRAM compared to three in the CMOS product.

All other assumptions such as the cleaning model and defect diagnosis equipment parameters

are the same as in the previous examples.

 When the CMOS product alone is sampled for performing defect diagnosis, the final yield

attained in 75 weeks of simulation is 0.48 for CMOS and 0.41 for DRAM. The yield of the

DRAM product is less than the CMOS entirely because of significantly lower polysilicon yield

for DRAM. Although the CMOS product has one more metal layer, the higher density of pol-

ysilicon defects more than compensates for the extra metal layer.
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Instead, if only the DRAM product is sampled for defect diagnosis, the maximum yields

attained are 0.68 and 0.60 for the CMOS and DRAM products, respectively. The difference in

learning rates amounts to a significant gain in terms of productivity and cost of good die, as

shown in Table 2. This analysis illustrates not only the importance of developing proper mod-

els to differentiate diagnosability of products, but also that such analysis can be applied to

quantify differences in cost benefits.

The advantage of using a product with high diagnosability was illustrated by setting the

area of search for defects to be very low i.e. mean = 0.08 cm2 and variance = 0.0002 for As. One

can also explore a spectrum of diagnosability conditions by varying As. The results obtained

from such experiments are shown in Table 3 to further illustrate the dependence of produc-

tivity and cost on the efficiency of failure analysis. It is assumed that diagnosability of a prod-

uct can be improved without incurring any extra cost.

CMOS Assisted
Analysis

DRAM Assisted
Analysis

CMOS DRAM CMOS DRAM

Number of
good die
(millions)

1.518 2.804 2.107 3.605

Cost of
good die ($)

125 161 95 126

% of cost
from fail-

ure analysis
5.5 4.27 6.08 4.57

Table 2. Productivity and cost comparison for product assisted analysis.

mean As = 0.08
var As = 0.0002

mean As = 0.16
var As = 0.0008

mean As = 0.32
var As = 0.0032

mean As = 0.4
var As = 0.005

CMOS DRAM CMOS DRAM CMOS DRAM CMOS DRAM

Number of
good die
(millions)

2.017 3.605 2.086 4.400 1.758 3.900 1.364 3.007

Table 3. Productivity and cost comparison for different diagnosability conditions.
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Notice that the decrease in productivity and increase in cost is not monotonic with increas-

ing As. The table indicates that the case with mean As = 0.16 cm2 results in higher productiv-

ity and lower cost than with mean As = 0.08 cm2. Further investigation reveals that the yield

learning rate for the polysilicon defects is faster for the case when mean As = 0.16 cm2 for the

DRAM product. This increase in learning rate occurs because larger mean and variance in As

results in a decrease in number of diagnosable chips for both metal and polysilicon defects.

This decrease reduces the load on failure analysis facility. The decreased load in turn allows

analysis of chips with polysilicon defects in addition to the ones with metal defects. In the case

where mean As = 0.08 cm2, the higher rate of occurrence of diagnosable metal defects results

in much less capacity available for diagnosing polysilicon defects.

Notice that the diagnosability of a product can be improved in several ways. One can add

test points to improve the observability of certain faults. One can design appropriate diagnos-

tic electrical testing procedures to isolate and localize defects. In products with internal mem-

ory structures (cache, ROM, etc.), one can make these structures accessible for external

testing. Each of these methods will have a different effect on the distribution of the search

area and require some resources (and thus cost) to be allocated. But one should certainly

explore such possibilities for at least one product (not necessarily a memory product) in the

line, since the possible rewards can be substantial. It should be noted that other products will

benefit only when there are common process steps between the products. For defects in steps

not shared by different products, for example trench capacitor formation in DRAM, there can

be no yield benefits.

Cost of
good die ($)

95 126 91 103 108 117 139 151

% of cost
from fail-

ure analysis
6.08 4.57 5.54 4.89 5.87 5.41 5.23 4.80

mean As = 0.08
var As = 0.0002

mean As = 0.16
var As = 0.0008

mean As = 0.32
var As = 0.0032

mean As = 0.4
var As = 0.005

CMOS DRAM CMOS DRAM CMOS DRAM CMOS DRAM

Table 3. Productivity and cost comparison for different diagnosability conditions.
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6. Conclusions

We have presented a new methodology to estimate both cost and yield of VLSI circuits as a

function of time. The key and unique characteristic of our methodology is the integration of

major relationships governing the kinetics of the IC manufacturing operation. Such integra-

tion provides a very powerful option for the crucial process of strategic manufacturing design

and decision-making. We have also presented a representative suite of applied models which

take into account the inter-domain dependencies.

The methodology and the models were implemented as the software tool Y4. Through a

spectrum of simulation results we have illustrated that Y4 can reasonably replicate the man-

ufacturing line characteristics. This has been achieved after extensive tuning to semiconduc-

tor manufacturing reality.

But more importantly, we have shown that Y4 is capable of simulating scenarios which are

relevant to cost-revenue trade-off studies. Such a capability in our opinion is extremely valu-

able if one takes into account such manufacturability-related tasks as:

a. Factory design and capacity planning,

b. Product design and analysis,

c. Designing failure analysis strategy and

d. Testing strategy.

It is important to re-emphasize that, for the sake of simplicity, we ignored several factors

such as operator interaction and applicability of particle scanners in yield learning. It must

also be noted that the results presented here are specific to the factories considered and the

assumptions made, and that any two factories are unlikely to be the same. However, there is

reason to believe that the trends observed in our simulations does illustrate the reality of

semiconductor manufacturing. Finally, it must be mentioned that the approach taken in Y4

is only a first step in modeling IC manufacturing in a manner addressing inter-disciplinary

trade-offs. The methodology described here should, and hopefully will, be expanded in the

future. So the results presented in this paper should be viewed as an opening of a new domain

of study rather than as the final results of mature research.
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