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ABSTRACT
A model based on information theory, which allows yield managers to choose the optimal strategies for yield management in
microelectronic manufacturing, is presented.  The data reduction rate per experimentation cycle and data reduction rate per
unit time serve as benchmarking metrics for yield learning. These newly defined metrics enable managers to make objective
comparisons of apparently unrelated technologies. Four yield analysis tools -- electrical testing, automatic defect
classification, spatial signature analysis and wafer position analysis -- are examined in detail to suggest an optimal yield
management strategy for both the R&D and volume production environments.
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1. INTRODUCTION
Manufacturers of integrated circuits invest billions of dollars in process equipment, and they are interested in obtaining as
rapid a return on their investment as possible.  Market dynamics allow for healthy profit margins only during the early part of
a product’s lifetime. The sooner a potentially lucrative circuit yields, the sooner the manufacturer can generate a revenue
stream. 1, 2 Rapid yield learning is thus becoming an increasingly important source of competitive advantage. Defects must be
detected, analyzed and eliminated within increasingly shorter time periods. The economic benefit to be derived from
shortening of data cycles can be better understood in the following example:

If one process tool disperses 100 defects of half a micron in diameter onto product wafers, it can
“kill” most of the 200 chips (typically) on wafers with a diameter of 200 millimeters.  Let us
assume that on average the tool kills half the chips on every wafer, and that these chips are
microprocessors that sell for $100 a piece. The tool will therefore cause $10,000 of damage in the
time that it takes to process one wafer, which may be as short as one minute.  If the tool is situated
near the beginning of the line, it may damage wafers that will take nearly two months to reach the
end of the line, when the problem is discovered.  In the interim, the tool continues to reduce the
profit of the operation by $10,000/minute, $600,000 per hour or more than $10 million per day.  If
the problem is discovered after the first damaged wafer that exits the end of the line, more than
$500 million will have been lost.

Clearly, it is in every semiconductor manufacturer's interest to discover process excursions and tool contamination early,
even if they do not actually impact the yield.  The potential damage is so great that the manufacturer needs to proactively
respond to every defect signal.  Semiconductor manufacturers have thus invested in expensive in-line inspection tools that
detect contamination that may or may not cause electrical faults within a few hours of critical process steps. Defect analysis
tools and defect-sourcing methods reduce the data generated by inspection tools and indicate the process steps that are the
likely culprits of potential yield loss.



Yield managers have a large but expensive arsenal of yield improvement tools and methods at their disposal.  Different tools
perform different functions under different conditions and some combinations of tools and methods work better than others.
Yield managers need to know which combination of tools works most optimally and cost-effectively to maximize the
profitability of their operations. They require metrics that allows them to assess the value of apparently unrelated options. In
layman's terms, they need to effectively compare apples with oranges.

This paper uses a model based on information theory in an attempt to create an objective method of comparing technology
options for yield analysis.  The data reduction rate per experimentation cycle and data reduction rate per unit time serve as
benchmarking metrics for yield learning. Four yield analysis technologies -- electrical testing (ET), automatic defect
classification (ADC), spatial signature analysis (SSA) and wafer position analysis (WPA) -- are examined in detail to
determine an optimal yield management strategy for both the R&D and volume production environments.

2. CONVERTING DATA TO KNOWLEDGE
Yield learning is an iterative experimentation process that is repeated until all sources of yield loss are detected, identified
and eliminated, or until the cost of further experimentation exceeds the benefit of the knowledge gained 3, 4. Yield learning
can be accelerated by shortening the experimentation cycle, or by making each experimentation cycle more effective. The
former option depends upon the engineering team's ability to reduce the design time of an experiment, fabrication facility's
ability to reduce the fabrication cycle time, the test area's ability to accelerate the data generation rate, and the engineering
team's ability to increase the data analysis rate.  The latter option depends upon how the data are analyzed, and to what extent
they are converted to knowledge.

Information theory provides an excellent metric for how effectively data is converted to knowledge, specifically, the entropy
of the information source 5-8. A source of information reveals an amount of information I(Xi) whenever the source is in state
Xi 

9. I(Xi) is known as the self-information and is given by

)(log)( 2 ii XPXI −=    bits (Eq. 1)

where P(Xi) is the probability of occurrence of state Xi. The unit “bits” is related to the base of the logarithm; it could
alternately be “hartleys” for a base of 10 or “nats” for a base of e.

Information entropy is defined as expectation of I(Xi) or the average amount of self-information per state 10,11. It is given by
the random variable
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Information entropy is at a maximum when all states are equiprobable or P(Xi) = 1/m. It approaches zero as the probability of
one state approaches unity and the probability of all other states approach zero. In other words, information entropy
approaches zero, as knowledge is extracted from the information.

The relative entropy of a probability distribution P(Xi) with respect to a second probability distribution P(Yi) is given by
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where the sum covers all possible states of the system 8, and P(Yi) plays the role of a reference measure.  The relative entropy
can thus be used to compare the final state of an experimentation cycle to the initial state or to benchmark the amount of
knowledge extraction performed by two different, possibly unrelated processes.

In an economic environment governed by radical experience curves, the actual value of knowledge extraction also depends
on the time required to reduce the data, or the length of the experimentation cycle. A tool that identifies the source of an
electrical fault with absolute certainty but requires the full wafer fabrication process to be completed may be less valuable
than a tool that can identify the source of a fault with significant probability within a few hours. A total systems approach that
uses combinations of tools that complement each other may be the most effective strategy 12, and the global rate of
knowledge extraction can serve as the metric that determines the optimal combination.

3. ELECTRICAL TESTING AND WAFER POSITION DATA
Chips on product wafers are electrically tested for functionality shortly after they emerge from the fabrication facility.  The
wafers also typically contain microelectronic test structures that may reveal characteristics of the fabrication process when
subjected to a parametric test, where the effects of varying several electrical parameters on the output signal of the test
structures are studied. Functional testing alone identifies defective chips, but both functional and parametric testing of
product wafers can localize the source of an electrical fault to within a neighborhood of a few process steps.  In doing so they
dramatically reduce the entropy of the information source.  For example, if the fact of chip failure were the only information
available to a yield engineer, the engineer would have a 1/500=0.002 chance of identifying the culprit process step in a
process that consists of 500 such steps.  If, however, the engineer had access to the information that the n-type metal oxide
semiconductor (NMOS) transistor threshold voltage was out of specification, then the engineer could most likely use his/her
expertise to reduce the source of the electrical fault to a neighborhood of about 20 process steps.  These include gate
oxidation, polysilicon lithography, polysilicon etch, spacer oxidation and a few ion implants.  Without access to the history of
the process, the engineer would have to assume that each step has a 1/20=0.05 chance of being the culprit.  Assuming the
potentially relevant steps are numbered 151 through 170, then substituting the aforementioned odds into Equation 3 yields
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With prior knowledge of the history of the process, the engineer could assess that some of the 20 candidate steps were more
likely to be the culprits. The initial entropy of the 20 candidate steps would then be lower than what is inferred by
equiprobability, increasing the relative entropy of the knowledge extraction in Equation 4 and the apparent value of electrical
parametric testing.

As mentioned previously, the knowledge extraction rate is the more meaningful assessment of value for yield analysis tools.
An engineer who had no access to a parametric tester could, for example, have reduced the possible number of culprit process
steps from 500 to 20 by stripping back the wafer to the to the process layers that hosted the problem. However, this would
have taken more than 100 times as long as localizing the problem by a parametric tester, which could evaluate a wafer in
about an hour.  (In addition, a whole wafer, possibly worth a few thousand dollars, would have to be sacrificed for stripback.)
A parametric tester can thus be assigned a data reduction rate of about 5 bits/process step/hour, whereas stripback most likely
does not reduce data at a rate faster than 0.05 bits/process step/hour. Most engineers therefore value access to a parametric
tester very highly.

Nonetheless, by itself parametric testing can rarely be used to pinpoint the source of an electrical fault to the actual process
step. Randomizing and recording the wafer order prior to every process step, may yield enough information to identify the
culprit step precisely and rapidly. 13, 14 Data from parametric testing can be correlated to the wafer order at each process step.
Any correlation between an electrical parameter and wafer order can potentially infer causality.



Figure 1 shows two examples of how the value of a parameter can correlate to wafer position. Figure 1a shows no apparent
correlation for parameter A, whereas figure 1b depicts a distribution in which the parameter B varies in sequence from lowest
to highest. The odds against a distribution like the one in figure 1b occurring by chance are one in 25! or about 6.5*10-26.
The odds in favor of the process step in figure 1b being the cause of the variation of parameter B are astronomical and it can
be concluded that the subsequent entropy would be nearly zero.
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Figure 1 (a). Parametric Data as a Function of Wafer Position (Random Distribution)
(b). Parametric Data as a Function of Wafer Position  (Strong Correlation)

Revisiting the case of the out-of-spec threshold voltage of the NMOS transistor with access to wafer position data allows an
engineer to reduce the entropy of the data source much further than Equation 4 would suggest.  The wafer position data
would identify a single process step, say threshold implantation, as the culprit of the electrical fault, effectively reducing the
data from equiprobability over 500 steps to virtual certainty. Following the same line of reasoning pursued in deriving
equation 4 results in a knowledge extraction of 8.94 bits/process step for the combined approach parametric tester/wafer
position data approach, a significant improvement over what a parametric tester can do by itself.  Analysis of wafer position
data also adds some finite time to the knowledge extraction process, which pegs the data reduction rate of the combined
approach to about 8 bits/process step/hour.

To summarize, with no initial information all process steps have the same chance of being the source of the fault.  Electrical
parametric testing concentrates the probability into 20 steps, increasing the information content and reducing the information
entropy in the process.  Wafer position data pinpoints the process step and reduces the information entropy to very low levels.

4. SHORTENING THE DATA CYCLE
The data analysis activity described in the previous section is only one in a series of steps in the experimentation cycle 3. The
other steps have to be included to get a meaningful benchmark of yield management strategies.  Thus the sum of the design
time, fabrication time and analysis time is the appropriate denominator for knowledge extraction, which slows down the
learning rate over a full VLSI process cycle of about 50 days to (8.94 bits/process step)/(50 days) = 0.18 bits/process
step/day. At that learning rate, hundreds of millions of dollars could be lost by the time the source of a problem has been
identified.  Semiconductor manufacturers have thus resorted to fabricating fractions of the process in parallel on test wafers
3, 15-17. These methods, called short cycles, primarily practiced in R&D and on an ad hoc basis in manufacturing because of
test wafer cost, cannot capture faults such as plasma damage where a problem near the end of the process affects a structure
fabricated near the beginning of the process.

The value of these methods has to be assessed according to how they extract knowledge from a whole gambit of variables.
For this purpose it is useful to assume that n electrical parameters characterize a process.  Thus the average knowledge
extraction is given by
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Let us now assume that a full VLSI process is broken up into 6 modules with a fabrication cycle of 10 days each, and that
these modules are fabricated in parallel. Let us also assume that 100 electrical parameters characterize this process (n = 100)
and that 10 of them cannot be analyzed on short cycle. These 10 parameters would then remain in a state of equiprobability
over 500 process steps: their relative entropy would equal zero. The other ninety parameters would experience the previously
calculated data reduction of 8.94 bits/process step. Substituting these values into Equation 5 gives

HPOST ||PRE-SHORT CYCLE =
100

94.890010 ×+×
 = 8.05 bits/process step (Eq. 6)

Given an experimentation cycle of 10 days this translates into a learning rate of about 0.8 bits/process step/day, a marked
improvement over the 0.18 bits/process step/day for the full VLSI process.

5. AUTOMATIC DEFECT CLASSIFICATION AND SPATIAL SIGNATURE ANALYSIS
The potentially dire consequences of not detecting an electrical fault early during the process have motivated technology
managers in the semiconductor industry to introduce an inspection step after about every ten process-steps.  During these
inspections optical imaging and light scattering tools find defects that could cause faults. Most of these tools have the
capability to separate defects that have been added to the wafers from defects that were detected at previous inspections.  The
inspection tools also transfer the coordinates of the defects to defect review tools, which enable an engineer to classify the
defects and identify their source. Defect review was performed manually until the advent of ADC, which proved to be more
accurate and orders of magnitude faster than a human inspector. In other words, ADC can reduce information entropy much
faster than a human being can.

ADC as applied in the semiconductor industry is the process of automatically categorizing wafer defects into one of multiple
classes using data captured by wafer analysis instruments.  The type of data that is used by the ADC algorithms varies with
the application. It could be optical microscope image data, scanning electron microscope (SEM) image data, material
composition information (e.g. from SEM energy dispersive spectroscopy), or confocal microscope image data.  ADC
compares the defect image to a set of images of known defect types and attempts to classify them into previously established
categories. These categories are typically associated with process steps through historical data.  ADC therefore has an
excellent chance (typically, 70 to 80% of all cases) of identifying the source of a fault-causing defect. 18
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Figure 2. Probability Mass Functions of an Automatic Defect Classification

The phrase "excellent chance" implies finite odds of misclassification or classification into a category called unknown.  This
complicates the entropy picture by perceivably adding to the entropy of the source during the data reduction process.  Figure
2 illustrates this effect in a hypothetical case where ADC identifies the culprit process step in 73% of all attempts. The other
27% of all attempts either result in misclassification or classification as an unknown.  In the absence of a well-documented
history of the process, misclassified or unclassified defects have an equal chance of being generated in any of the 10 possible
process steps.  Let us also assume that for the specific case in Figure 2, ADC points to only 3 defect sources out of the 10
under consideration. The classifier would assign 40% of all defects to step X104, 20% to step X106 and 13% to step X107.



The remaining probabilities of 0.027 per process step come from misclassification or classification as unknown.  Therefore,
P(X104) = 0.4+0.027 = 0.427;  P(X106)= 0.2+0.027 = 0.227;  P(X107) = 0.13+0.027 = 0.157; and P(X101) = P(X102) = P(X103) =
P(X105) = P(X108) = P(X109) = P(X110) =  0.027.  Considering that at the beginning there is equal probability of the defects
being caused by any of the 10 sources, initially P(Yi) = 0.1 for all ten process steps in question. Substituting these data into
equation 3 gives the entropy reduction provided by this ADC classifier.
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The experimentation cycle for this process sequence, which consists of 10 process steps, equals one day. Therefore the
learning rate provided by this ADC system is 0.91 bits per process step per day.

Purposeful randomization of wafer order with prior knowledge of wafer order can narrow the search for root cause whenever
some wafer-to-wafer variation is detected at inspection. Thus wafer position data is applicable also for in-line analysis as well
as end-of-line correlation to parametric or functional test data. For example, correlating wafer positional data to defect
inspection data, short loop monitor results, or visual observations, significantly reduces information entropy and accelerates
the defect learning rate. 14

A spatial signature is defined as a distribution of defects originating from a single manufacturing problem.  SSA is an
artificial intelligence method that has been developed in partnership between SEMATECH, Austin, Texas, and the Oak
Ridge National Laboratory, Oak Ridge, Tennessee.  The method relies on capturing operator experience through a teaching
method to emulate the human response to various manufacturing situations.  This has been successfully accomplished
through the development and application of an image processing-based, fuzzy classifier system.  The technique uses data
collected from current in-line inspection tools to interpret and rapidly identify characteristic patterns, or "signatures", that are
uniquely associated with the manufacturing process.  The SSA system then alerts fabrication engineers to probable yield-
limiting conditions that require attention. 4, 19-21

Figure 3. Random defects (inserts) and spatial signature

Figure 3 illustrates the difference between random defects and spatial signatures.  The distribution of random defects, such as
the ones shown in the inserts of Figure 3, has no clearly discernable pattern.  However, spatial signatures, like the scratch on
the wafer in Figure 3, are macro phenomena that can kill multiple chips.  They generally exhibit distinctive patterns that can
be readily discerned by machine vision software.  Figure 4 shows an array of such patterns, including one that the SSA
classifier has categorized as random due to its apparent lack of a pattern.



We can extend the argument of information entropy reduction to the SSA approach as follows. We assume 100 defects have
been detected and that there are 10 possible sources of these defects: Steps X201 through X210. Before applying SSA, the
probability P(Yi) of determining the source of any defect is 0.1. Let us also assume that SSA separates 92 of these defects
into 3 large clusters such as the ones shown in Figure 4, and only leaves behind 8 isolated defects to classify. Thirty-five of
the hundred defects are assigned to step X203; fifteen to X205; and forty-two to step X208. The remaining eight unclassified
defects could come from any step between and including X201 through X210, adding 0.008 to the odds of a defect coming from
each of the ten states.  Thus P(X201) = P(X202) = P(X204) = P(X206) = P(X207) = P(X209) = P(X210) = 0.008; P(X203) = (0.35 +
0.008) = 0.358; P(X205) = (0.15 + 0.008) = 0.158; and P(X208) = (0.42 + 0.008) = 0.428.  Then the relative entropy of this
knowledge extraction is given by Equation 8, which corresponds to a learning rate of 1.45 bits per process step per day.
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Figure 4. Various types of signatures found by SSA.  (a) Mechanically induced signatures caused by scratching,
spinning, and handling, and (b) random and systematic defect distributions caused by tools and processes.

6. CONCLUSION
Technology managers in the semiconductor industry need strategies for yield management and fault reduction. Accelerated
yield learning gives competitive advantage in R&D environment, which is characterized by radical experience curves.
Capital productivity generates competitive advantage in the production environment, where an undetected source of electrical
faults can cause enormous losses. The authors have identified “knowledge extraction rate” to be a new success metric for that
can serve as a benchmark for the valuation of technologies in both environments. The knowledge extraction has also been
quantified by using the Kullback-Leibler formula for relative information entropy, as demonstrated by an estimation of the
relative value of four technologies -- electrical testing, wafer position data, automatic defect classification, and spatial
signature analysis.

In practice, technology managers in the semiconductor industry are not confronted with an either/or decision between these
technologies. Electrical testing on some level is a must, because it is the only technology that identifies sophisticated faults.
Inspection-related technologies are also mandatory, because they can identify sources of faults on short notice. Managers
would thus like to know the optimal amount of resources to invest in each of the aforementioned technologies. Cost-of-
Ownership models, which have been customized for the semiconductor industry over the last 15 years 22-30, give managers a
very good idea of the true cost of technologies.  Managers also typically have ample historical data on the relative frequency
of fault types that have plagued their factories.  Matching this knowledge to the value metrics established in this paper will
allow mangers to significantly improve upon the current level of cost/value propositions for yield management and fault
reduction.
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