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Yield Forecasting

Abstract

Success of modern semiconductor manufacturing has been achieved through a
number of key innovations in the areas of IC design, manufacturing, testing and fail-
ure analysis. Research and development in each of these areas have grown to such a
level of complexity - reflecting the complexity of today’s industry - that the inter-
dependence among these areas has largely been side-tracked. But the performance of
a semiconductor industry is not only dependent on the advancements in these indi-
vidual areas but also on their interactions.

One of the significant detractors of cost in a modern manufacturing line is yield
loss due to contamination and the time required to ramp-up the yield to profitable
levels. Yield loss and its rate of change with time in a manufacturing line is deter-
mined by the various attributes of fabrication, product, testing and failure analysis
and their interactions which determine yield learning rate. This research attempts to
gain an understanding of the nature of this inter-relationship by addressing the prob-
lem of predicting yield as a function of time for a multi-product manufacturing line.

In this thesis, first the process of contamination related yield learning as it hap-
pens in a manufacturing line is presented. Then a methodology to predict yield learn-
ing curves for a multi-product manufacturing line is proposed. A suite of models has
been developed which capture the primary factors determining yield learning rate.
The methodology and models have been implemented in a discrete event simulator -
Y4 (Yield Forecaster). Through a series of simulation experiments, estimates of per-
formance parameters like cycle time, yield, test escapes, and learning rate are pre-
sented to illustrate some of models individually. Then another series of experiments
are presented to illustrate the applicability of Y4 in performing cost-revenue trade-off
studies for a variety of situations. Through these experiments, it is concluded that
more attention must be devoted to characterizing those attributes of product and fail-
ure analysis that determine the ease of diagnosis. But more importantly, the inter-
relationship between manufacturing entities should be characterized well in order to
be able to and determine cost benefits of making improvements in the design objec-
tives.
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Chapter 1
Introduction

Rapid growth in several key technological areas such as communications, transpor-

tation, computers, software and consumer electronics has been possible due to tremen-

dous advances in the integrated circuit manufacturing technology [1]. In the last 25

years, the semiconductor industry has grown from the Intel 4004 chip containing 2300

transistors to the 9.3 million transistors of Digital 21164 [2, 3, 4] closely following

Moore’s Law [5]. This has been possible due to the equally rapid advancements in

manufacturing process and IC design technology. Increasing demands for more pow-

erful and smaller computing machines have fueled the need to manufacture such com-

plex ICs. It is predicted that this need of the electronic industry for even more complex

ICs is going to grow at an even faster rate. By the end of this century a state-of-the-

art microprocessor may be expected to contain upwards of about 50 million transistors

[6, 7].

From a cost point of view, such a growth was unhindered in the past mainly because

manufacturers were able to maintain sufficient volume of production to ensure low

cost per fabricated unit. Increasing demand for more IC products have, however,

attracted more manufacturers making very similar products resulting in a highly

competitive market. At the same time, the continuous drive towards smaller feature

size on an IC and larger die size itself has caused an increase in the cost of manufac-

turing. Tough competition and increasing cost have thus made semiconductor manu-

facturing a risky venture.
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To be more specific, the cost of a new VLSI fabrication line producing several differ-

ent products using several hundred processing steps, is now estimated to be close to a

billion dollars [8, 9]. Both the cost and complexity of manufacturing have been

observed in the past to increase exponentially and there has been no indication that

this trend is going to slow down [10, 11, 12]. To maintain a competitive edge, ICs must

be precisely manufactured within tight tolerances. Thus, in order to keep the cost of

manufacturing down one must ensure that no errors are made during any of the

stages of producing ICs from design to packaging.

Manufacturing ICs without any errors is a complex task [13]. Whenever a new pro-

cess or product is introduced, the manufacturing yield or the fraction of correctly man-

ufactured ICs is usually low. One has to ensure not only that the processes and

products are designed to be high-yielding but also that errors in manufacturing are

eliminated as quickly as possible through continuous and timely improvements. This

correction process is known as yield learning.

Rapid yield learning is key to manufacturing success [13]. High yield not only trans-

lates to lower cost per unit but also means that a larger number of ICs can be delivered

in time to maintain a competitive edge. Therefore, one must be able to ramp up yield

quickly using available resources efficiently. The rate of yield learning is a function of

a number of inter-dependent attributes of IC design, fabrication process and the fail-

ure analysis facility. These attributes in turn depend on a large number of possible

choices related to design style, products, equipment, technology, etc. Therefore, the

technology to debug the manufacturing line needs to be more complex and advanced

than the product technology to be effective and, hence, very costly. Optimum explora-

tion of cost-revenue trade-offs requires adequate simulation and experimental models

to be developed taking into consideration the yield learning process.
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1.1 Yield Loss in IC Manufacturing

Figure 1.1 shows the sequence of stages in a manufacturing line leading to produc-

tion of ICs from bare silicon wafers. These four stages are: wafer fabrication, probe

testing, packaging and final testing. During wafer fabrication the IC structure is

defined on the wafers each of which is tested during the probe testing stage. The

wafers are diced and the dies which pass the tests are packaged and subjected to a

final suite of tests before shipping. Errors or imperfect processing, which can occur

during any of these stages, may lead to some or all ICs on each wafer to malfunction.

Such malfunctioning ICs are detected at one of the two testing stages. In a manufac-

turing line most of the causes of yield loss occurs during the wafer fabrication stage.

In fact, any yield loss observed at the subsequent stages is likely to have originated at

the wafer fabrication stage. Some of the yield loss observed in the later stages could

also be due to wafer handling problems.

The reasons for yield loss during the wafer fabrication process can be classified as

shown in Figure 1.2. The two main classes are throughput yield loss and die yield loss.

This classification does not include systematic yield problems related to design errors,

and only yield problems due to random events in manufacturing are considered.

Figure 1.1 Flow of a manufacturing process.

Wafer
Fabrication

Probe
Testing

Packaging
Final

Testing

Bare Wafers Input ICs to be shipped

Fabricated Wafers

Tested Wafer

Packaged ICs

Rejected Wafers Rejected Wafers Rejected dies Rejected ICs
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1.1 YIELD LOSS IN IC MANUFACTURING

Throughput yield loss, as the name suggests, is the difference between the input rate

and output rate of wafers during the fabrication stage. This difference can be due to

wafers being rejected because of misprocessing or mishandling. Misprocessing can

happen because of equipment failure, incorrect sequencing of wafers, etc. Mishandling

of wafers by the operators can lead to wafer breakage, gross defects on the wafers, etc.

In a modern manufacturing line throughput yield loss is usually very low because

most of the steps are automated.

Die yield loss is defined as the fraction of the total ICs manufactured which are

defective. The disturbances leading to die yield loss can be further classified into two

types: global and local disturbances [13, 14]. Global disturbances are those which

affect entire wafers in such a way that all or most of the dies fail to meet acceptance

criteria. These could be random variations in equipment settings, material properties

or errors in masks [15]. More specifically, variations in gas pressure, temperature set-

tings, dopant concentrations, etc., are examples of global disturbances. The effect of

such variations can be uniform across the entire wafer surface or can be non-uniform.

For example, if the etching time for contacts is insufficient then one can expect the con-

Figure 1.2 Types of yield loss in fabrication process.

Yield Loss

Throughput Die
yield loss yield loss

Global LocalMisprocessing

Mishandling

 disturbances disturbances
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tact resistance to be higher than nominal for all dies on a wafer. Alternatively, if there

is an etch rate variation across the wafer surface then one might observe higher than

nominal contact resistance in only some of the dies. As in the examples above, global

disturbances usually affect the electrical properties of the transistors and intercon-

nects leading to variation in performance parameters such as speed and power con-

sumed by the ICs. A failure is said to occur when performance parameters are outside

accepted limits. Such failures are more commonly referred to as parametric failures

[13].

Unlike global disturbances, local disturbances affect portions of the wafer surface

whose dimensions are comparable to those of IC features such as transistors, contacts,

etc. The local deformations manifest themselves as small regions of extra or missing

material in the IC structure and are referred to as spot defects [16, 17, 18]. Spot defects

can occur in any of the conducting, semiconducting or insulating layers of the IC and

may lead to alteration in the topography of the intended circuit. For example, a spot

defect can cause a short between two or more electrically unconnected nodes or, a

break in an electrical path, etc. Such topographic changes in the circuit alter the

intended functionality of the circuit and therefore the resultant circuit failures are

referred to as functional failures, or faults in ICs [16].

Spot defects leading to functional failures are caused by the presence of contamina-

tion from various sources during fabrication of wafers. Such contamination are partic-

ulate in nature comprised of solid particles or liquid droplets. These particles may be

present in the materials used for processing, generated by the equipment, or may even

be something airborne.

From a manufacturing cost perspective, it is important that the yield loss resulting

from such diverse causes be as little as possible [19, 20]. During the early stages of

manufacturing - the prototyping stage - the yield is low because of both global and

local disturbances. At this point, the focus is on correcting or controlling the global dis-
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1.1 YIELD LOSS IN IC MANUFACTURING

turbances which cause entire wafers to fail. This is achieved through observing elec-

trical parameters of fabricated dies, measuring in-line parameters (such as

dimensions of deposited material), etc., and subsequently correcting process settings

to produce the desired results. This is referred to as statistical process control (SPC)

[15, 21, 22].

Once the fabrication line is stabilized from the point of view of global disturbances,

the focus is shifted towards correcting yield loss due to local disturbances. During this

stage - the yield learning stage - failed dies are analyzed and corrective actions are

taken to control the level of contamination. This stage is also accompanied by an

increase in the volume of production. Time domain changes in yield at this stage have

a substantial impact on the cost of manufacturing and the accrued profits. This

research focuses on the defect limited yield learning for a manufacturing line.

Eventually, the rate of yield learning decreases as the yield approaches 100% and

this is the high volume stable manufacturing stage. Any semiconductor manufactur-

ing operation would like to reach this stage as quickly as possible since the bulk of the

profits are realized in this period. Figure 1.3 shows an example average yield vs. time

curve illustrating the three stages of manufacturing described above.

Time domain changes in yield could also be the result of an inherent change in the

nature of the disturbances, but it is mainly due to the deliberate continuous improve-

ments made in the design and to the process. The rate of yield learning could have

been slower or faster (shown as dashed curves in Figure 1.3) depending on how quickly

one is able to remove the process problems. A slower rate of yield learning can result

not only in loss of revenue but may also lead to losing the market to other competitors.

A higher rate of yield learning may require a more costly and complex contamination

control strategy. Understanding this cost-revenue trade-off is a necessity in decision

making.
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1.2 Yield Learning Curve as a Decision Tool

In the past, learning curves have been used widely to prepare cost reduction pro-

grams, forecast price, and set product development goals in several industries such as

automobiles, airplanes, steel, chemical, etc. [23, 24]. In 1936, the concept of a learning

curve was first defined with the observation that the man-hours required to assemble

an airplane declined by 20% each time the unit production doubled [23]. In this paper,

data from 15 industries were presented to illustrate the cost reduction obtained with

increasing production volume. It was also observed that semiconductor industry con-

sistently demonstrated a higher rate of learning during the period 1973-1978 due to

increase in volume.

The cost of manufacturing in the semiconductor industry is, however, determined to

a greater extent by the rate of increase in yield rather than reduction in man-hours.

Increasing capacity of production can reduce the unit cost of production only to a cer-

tain extent [25]. In the semiconductor industry the choice of technology, equipment,

product, design style, etc. is very diverse and so are the number of ways yield loss can

Figure 1.3 Yield vs. time curves.
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1.3 NEED FOR A METHODOLOGY FOR YIELD FORECASTING

occur. The choices regarding techniques and equipment available for correcting causes

of yield loss are similarly large. Each cross-section of choices must be evaluated from

the yield learning perspective to be of any use in the decision making process. From

Figure 1.3, it is clear that the actual nature of the yield learning curve is of great stra-

tegic interest.

Besides using yield learning curves to choose the appropriate resources, one can also

use them to evaluate the operating strategies of a manufacturing line. For example,

one can specifically dedicate certain products, including specially designed test struc-

tures, to aid in analyzing the causes of failures. Appropriate sampling rates of wafers

for analysis can be estimated for achieving better yield learning rates. Problem areas

can be isolated and resources can be reassigned to deal with specific types of yield loss

efficiently.

The success of a manufacturing line also depends on timely alterations of resources

and products. In this case, one can use yield learning curves to aid in deciding when

to introduce new products in the line which could also be simply smaller or more

advanced versions of the existing products. In this way one can take advantage of a

partially “debugged” line to achieve a higher rate of learning for a new product. Timely

introduction of new equipment and technology can also be judged based on the esti-

mated yield learning curves. Maximizing the use of existing equipment and technol-

ogy is of concern given that product and technology life cycle is usually only a few

years.

1.3 Need For a Methodology For Yield Forecasting

In the past, some methods were developed based on mapping the yield learning

curves of past products and technology onto new ones [25, 26, 27]. In these methods

the rate of learning was assumed to be known a priori or was assumed to be easily

obtainable by extrapolating from past yield data. Such assumptions are valid in cases
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where a manufacturing line is dedicated to a single product like DRAM, and, extrap-

olating is useful to some extent as shown by [26]. In another method, instead of mod-

eling yield, the defect rate is modeled as a function of time [26, 28]. In both of these

methods neither the yield learning process is considered nor do they describe the

learning rate in terms of physical attributes of yield loss mechanisms, products, test-

ing strategy, failure analysis strategy, etc.

A yield predicting methodology based on such attributes can be used to address sev-

eral important issues in a manufacturing line. When a new product is introduced in a

line one would like to know the length of time to reach a particular value of yield. If

the length of time is unacceptable then one would like to know means to shorten it.

There can be a number of available choices but one must be able to quantify the cost

effectiveness of each of the options. The options could be alternate product design,

cleaner equipment or more failure analysis resources. But more often than not the

best solution can be a combination of a number of options. For example, one can use

an easily diagnosable product like memories to bring the yield up to a certain level

quickly. Then the second product can be introduced at a predetermined time to take

the maximum advantage of higher initial yield and learning rate. But such quantifi-

cations require that a yield prediction methodology be developed taking into account

the inter-relationship between domains which are traditionally considered in isola-

tion.

Using yield learning curves to aid in the decision making process is appropriate only

when combined with cost estimates or cost learning curves. As a simple example, Fig-

ure 1.4 shows cumulative manufacturing cost and revenue versus time curves. The

intersection, point A, represents the point in time when the manufacturing line starts

to make a profit. If the product is replaced by another design which is easier to diag-

nose then the revenue curve could look like the one shown by the dotted line. Time to

profit (point B) is shorter than the previous situation. However, if the manufacturing
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cost increases simultaneously (shown by dashed line) then the time to profit could be

as shown by point C. The worst case situation is when cost of manufacturing is high

and yield learning rate is low as represented by point D on the graph. In this case, the

risk of losing business to the competition is very high.

None of the methods developed earlier have the capability to estimate cost learning

curves. Thus there is a need for developing a methodology which takes into consider-

ation the yield/cost learning process in such a way that its is useful for evaluating

manufacturing strategies.

1.4 Research Goals

The goal of this research is to develop a methodology to predict yield and cost as a

function of time for a given multi-product manufacturing line. Such a methodology

should take into consideration the essential elements which govern defect related

yield and its rate of change with time in a modern semiconductor manufacturing line.

These elements of a manufacturing line are: product design attributes, timing and

Figure 1.4 Impact of yield learning on time-to-profit.
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operational attributes of wafer fabrication, efficiency and accuracy of failure analysis,

the nature and effect of corrective actions, and contamination properties. Such a meth-

odology should be combined with appropriate models describing the characteristics of

these elements which are consistent with the methodology to forecast yield. The mod-

els must closely reflect observed phenomena and take into account the complex inter-

actions between various manufacturing attributes. Appropriate cost models should be

developed to enable cost-revenue trade-off studies.

1.5 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 discusses the general

nature of the yield learning process in a manufacturing line. The various attributes of

manufacturing elements are discussed and presented in this chapter. Based on this

discussion a general methodology to predict yield learning curves is derived and pre-

sented in Chapter 3. This methodology is shown to be suitable for simulation and basic

requirements for simulation are also discussed. Chapter 4 presents the simulation

models which are mainly derived from existing models after making certain simplify-

ing assumptions. In some instances new models have been developed to describe the

inter-relationship between manufacturing attributes. Chapter 5 describes the general

organization of Y4 - software which implements the yield forecasting methodology and

models. Some basic results are presented in Chapter 6 to illustrate the general capa-

bilities of Y4 in mimicking well understood phenomenon. Chapter 7 deals with more

involved simulation experiments which illustrate the relevancy of the models towards

developing manufacturing strategies. Future work in several directions are suggested

in Chapter 8 and conclusions in Chapter 9.
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Chapter 2
Yield Learning in VLSI Manufacturing

In this chapter, a background on the process of yield learning in a manufacturing

line will be presented. The discussion will be based on two important interdependent

issues of a manufacturing line. One issue is the physical components which make up

a manufacturing line and their relevant attributes. The second issue is the causes of

yield loss and the nature of dependence of manufacturing line attributes on the yield

loss mechanisms.

2.1 Organization of Manufacturing Process

In Figure 1.1 on page 3, the structure of a manufacturing line was shown from the

perspective of a linear flow of wafers from input to the point where IC’s are ready to

be shipped. From a yield learning point of view, however, one has also to factor in the

role of failure analysis as shown in Figure 2.1. After the probe and final testing stages,

wafers with defective dies and packaged defective IC’s are sampled for failure analy-

sis. After the causes of observed failures are detected and diagnosed, certain corrective

actions need to be taken. Corrective actions are taken so as to remove or reduce causes

of yield loss in the fabrication stage.

One can further simplify the view of a manufacturing line as shown in Figure 2.2

since such a view is sufficient to illustrate the main attributes of yield learning [1].

Here, the manufacturing line is shown to consist of three phases: wafer fabrication,

probe testing and failure analysis. Wafers are processed in a sequence of steps defined

by the process recipe. At each step, a unique piece of equipment is used, and a specific
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layer of the IC defined. Disturbances can be introduced at each of these steps resulting

in a less than ideal environment for processing the wafers.

After completing the fabrication process, every die on each wafer is subjected to

probe testing to detect faults. The tested wafers are diced and the functionally accept-

able die are packaged and tested further. A fraction of the tested wafers are selected

to perform failure analysis. During failure analysis a fraction of the defective die on

the sampled wafers are carefully analyzed in order to detect the dominant cause of

Figure 2.1 Structure of Manufacturing line - yield learning perspective.

Figure 2.2 Simplified structure of a manufacturing line.
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failures. Based on this analysis, corrective actions are taken on the piece of fabrication

equipment found responsible for the observed failures. Let us now take a closer look

at each of these three phases along with the reasons for yield loss and the effect of cor-

rective actions.

2.2 Wafer Fabrication Phase

IC fabrication can be viewed as a process of moving wafers in groups (called lots)

through a sequence of equipment as defined by the process recipe. A number of factory

attributes must be considered as shown in Figure 2.3. Physical organization refers to

manner in which equipment, storage areas, etc. are located. Process recipes impose a

conceptual organization on the fabrication line since defining IC layers requires a

series of steps to be performed that may belong to different physical partitions of the

line. Wafers are differentiated by the product they belong to and their characteristics

also determines the operation of a fabrication line. Operating personnel have the

responsibility of sequencing and scheduling of wafers through the equipment. And

lastly, a number of operating rules are used to aid in scheduling.

Figure 2.3 Wafer fabrication attributes.
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2.2.1 Workstations, Equipment and Storage Areas

At the top level, the fabrication line is physically organized as work-areas where

related process steps like lithography (resist-spin, expose, bake, etch) are performed

[2, 3]. As shown in Figure 2.4, each work-area is further divided into work-stations

which are, in turn, composed of a number of pieces of equipment, all generally capable

of performing the same step such as oxidation, diffusion, etc. Each workstation is asso-

ciated with a storage or stocking area where the wafers (lots) are temporarily stored.

Broadly, there are two kinds of equipment that a wafer encounters during fabrication:

processing and measuring (metrology) equipment. Processing equipment actively

alters the surface of the wafers by depositing, oxidizing, etching, etc., defining the IC

structure and its electrical properties. The capacity, or the number of wafers that can

be processed in a piece of equipment is not necessarily the same as the lot size (number

of wafers in a lot is usually about 24-25 wafers). Some are batch equipment, like fur-

naces, which can process usually about 100 or more wafers at a time. Some equipment

like steppers can process only a single wafer at a time and some others like resist spin-

on equipment can process a few wafers at a time. Since all the wafers in a lot are

moved in a single group there are several rules which are applied to maintain this

organization. These rules will be discussed later.

Metrology equipment gathers data about the wafer such as layer thickness, width,

and undesirable formations of features on the surface. Equipment measuring undesir-

able features on wafers are also known as particle or defect monitors [4]. The data so

gathered may or may not be used further to control the properties of the line. Note that

not all wafers have to undergo such measurements. Depending on a particular fabri-

cation line policy only a fraction of wafers may be examined. The control of wafer flow

depends on the process specifications and will be discussed in the next section.

Occasionally, the equipment used in wafer fabrication may malfunction or break

down. In this case, the particular piece of equipment may have to be taken off-line and
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undergo repair. The amount of time a given piece of equipment is available for process-

ing is known as uptime. Not all of the uptime is devoted to processing and some idle

time is thus inevitable. The fraction of the uptime that a piece of equipment is devoted

to processing is known as utilization of the equipment and it serves as an indicator of

factory performance [3].

2.2.2 Process Recipe and Flow of Wafers

A process recipe is defined as a sequence of steps to be performed to fabricate a prod-

uct with a given technology such as CMOS, BiCMOS, DRAM, etc. Note that a single

recipe may be shared by many different kinds of products and there may be more than

one process recipe defined for a wafer fabrication line. A workstation is defined for

each step of the recipe where a wafer lot can use any of the pieces of equipment belong-

ing to the workstation to perform the process step. Each step is also associated with

process specification like time required to perform the particular step, temperature

and gas pressure settings, etc. In the case of metrology equipment, the specifications

take the form of the parameter that needs to be measured (thickness, width, etc.) and

the settings of equipment.

Figure 2.4 Work-Areas, Workstations, Equipment and Storage Areas.
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Two apparently different process recipes may in fact share the same steps and in

these cases the specifications for the shared step must be the same. Thus, if the step

uses batch equipment then several lots from different products can be possibly loaded

into the same equipment. In practice, however, there may be operating rules in effect

which do not allow such mixing of products. The important point to note here is that

both the products can be affected in a very similar manner whenever there is some

overlap in the process recipes. Figure 2.5 illustrates this overlapping of steps graphi-

cally showing that both work-station and specifications must match for steps to be con-

sidered equivalent. This is usually possible for processing steps of similar layers like

metal interconnects.

Quite often, several different steps of a particular recipe share the same worksta-

tion, a frequently occurring example being the photo-lithography step. Generally

speaking almost all the mask exposure steps are conducted in the same workstation.

Such steps are known as re-entrant steps, as is illustrated in Figure 2.6. Thus a wafer

can be exposed to the same environment more than once in the same piece of equip-

ment although a different layer is affected each time. In this case, although a work-

Figure 2.5 Overlap of process steps.
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station is shared the process specifications are necessarily different since two unique

layers are defined at each of the two steps. From a operational viewpoint, the sched-

uling task becomes complex and it will be discussed later.

The control flow of wafers through the metrology step is different since not all

wafers are sampled for in-line measurements (Figure 2.7). When the measured factor

for the wafers sampled are within specifications then the entire lot is accepted and

sent for further processing. Some wafers can be outside the acceptance limits but still

within reasonable bounds so that they can be corrected. The corresponding lot is sent

to appropriate steps for reworking in order to correct the problem. In the case when

the observed problem cannot be corrected the all wafers in the lot are rejected.

Figure 2.6 Re-entrant steps.

Figure 2.7 Wafer flow control in metrology step.
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2.2.3 Product Attributes

A product is identified by two factors: the design of the IC and the process recipe that

must be used to fabricate it. IC design is represented geometrically in terms of layout

of the different layers (diffusion, gate, polysilicon, metal, etc.) and is physically trans-

lated into masks to be used during the photo-lithography steps. A typical CMOS pro-

cess may require about 13 masks and a DRAM process may require about 17 masks.

From the point of view of technology, the other important attributes of products are

minimum feature size, die size and wafer size. Feature size is defined by the minimum

achievable length of the polysilicon over the gate oxide. Die size depends to a large

extent on the aperture of the stepper and to a lesser extent on the complexity of the IC

design and the minimum feature size. Wafer size is limited by the design of the equip-

ment used for processing. A current state-of-the-art fabrication line can achieve 0.35µ

gate-oxide length, about 1-2 cm2 die size using 200 mm wafers. Die size and wafer size

are important aspects of a fabrication line since the productivity of the line depends

on them.

From an operational perspective, one has to consider the desired rate of production

of a given product. This is determined by the input feed rate of wafers which is

expressed as a constant number of wafer starts per week (WSPW). In a single product

factory operating at a certain capacity, the WSPW value is also the production volume

of the line. In a multi-product factory the production volume is the sum of the WSPW

values for each product. The relative WSPW values of each product defines another

important aspect referred to as product mix. As expected, operation of a multi- product

and multi process factory is generally more complex and some of its aspects will be dis-

cussed later. A DRAM fabrication line is usually dedicated to a single product or dif-

ferent versions of the same product. In an ASIC (Application Specific IC) line, there

can be hundreds of different products and several different process recipes.
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2.2.4 Factory Personnel

Human assistance is necessary in a wafer fabrication line from time to time even

though most of the operations in a modern facility are automated. Broadly, the role of

factory personnel can be classified into four categories: wafer transportation, equip-

ment operation, inspection and maintenance. Wafer transportation involves moving

each lot from an output queue of one workstation to the input queue of the workstation

for the next step in the process recipe for the product. When a piece of equipment is

available for processing, the settings of the equipment (e.g., pressure, time, tempera-

ture, etc.) and the resources (e.g., chemicals, masks, etc.) may need to be changed. This

is referred to as equipment setup. Two other functions of personnel are to load and

unload the wafers in the equipment as it becomes necessary. Inspection of wafers at

any metrology step, where human judgement is necessary for operation, can be per-

formed by trained personnel. Maintenance personnels’ main function is to inspect and

repair various equipment in the event of malfunction or breakdown.

Fabrication line personnel can be viewed just like any other finite and limited

resource of the factory. The efficiency of operations of the factory thus depends on the

availability of the personnel at the right place in time. However, a large proportion of

the functions performed by the personnel on a regular and repetitive manner is being

automated to reduce errors.

2.2.5 Operating Rules

In order to understand the nature of operating rules, it is convenient to look at the

timing of the wafer movement in the factory. The total time spent from the input of

bare silicon to the completely fabricated wafer is an important factory performance

indicator [3, 5]. This cycle time is composed of the actual time a wafer spends being

processed (raw processing time or RPT), and the waiting time in between processing

steps. Typically, RPT can range from 250 to 350 hours for a state-of-the-art process.
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On the other hand typical cycle time can be 4 to 6 times the RPT value depending on

the extent of automation in the line. The waiting time is primarily composed of three

components: waiting for next available fabrication personnel to be transported to next

equipment, in transit between the equipment, and finally waiting for the next equip-

ment to become available for further processing. The secondary components of this

waiting time are times spent in equipment setup, and loading and unloading of

wafers. Figure 2.8 illustrates these timing components between two consecutive steps.

The role of operating rules is to reduce and control the waiting time of the wafers in a

factory [5, 6, 7, 8, 9, 10].

Three kinds of operating rules are used in a factory: wafer release rules, scheduling

rules, and rules for in-line metrology [2, 3, 6]. Wafer release rules control the way in

which different products are released into the factory. The most common mechanism

is to release products in single lots at an uniform rate. When production is ramped up,

the input rate can also change with time. Quite often the input feed rate can be guided

by other criteria such as expected due dates of the product, and inventory size. Inven-

tory size as measured by the number of work in progress (WIP) may need to be kept

Figure 2.8 Timing of wafer movement between steps (not to scale).
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within a reasonable upper bound [11]. Excessively large WIP can cause waiting times

to increase, causing cycle time to increase too.

Scheduling rules of wafers can be further classified as load rules, setup rules and lot

dispatch rules. Load rule is applicable only for equipment whose batch size is greater

than one lot. Full load required rule requires that whenever a piece of equipment is

free it must be loaded up to its full capacity. This means that the equipment may have

to wait until enough lots are available in the input queue. On the other hand, one can

also employ the partial load allowed rule in which case equipment waiting time is

reduced but this may decrease effective utilization [12].

Setup rules are required for re-entrant steps and multi-product factories where a

workstation may be shared by different steps and products. Setup rules define when

the operating conditions (settings) of a piece of equipment are changed. Ideally, one

would like to minimize the number of setup change-overs since they cost time and

introduce errors. Thus setup rules tend to select those lots which require exactly the

same settings as the previous ones preferentially over others. However, this ad hoc

rule can cause some lots to remain in the input queue for excessively long periods of

time. In that case, exceptions to the rule are made based primarily on the waiting time

of each lot in the queue.

Lot dispatch rules determine the ordering of the lots in an input queue. The simplest

one is first-in first-out (FIFO) where the lot with the highest waiting time is given the

highest preference. But such a rule may not always be optimal. Sometimes lots with

smaller remaining processing times are given preference [2]. Due date of a particular

product, and the size of the next queue may also be used as ordering criteria. By far

the most important over-riding criterion is the presence of certain lots which are pre-

assigned a high priority or hot lots. Where hot lots are present, these are given priority

over any other lots and over-ride any other rules such as setup and load rules [13].
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2.3 Yield Loss in Fabrication Process

As mentioned in Chapter 1 there are two kinds of yield losses one needs to consider

namely, throughput yield loss and die yield loss. The causes of throughput yield loss

can be further elaborated upon based on the discussion of wafer fabrication process

presented in the last section. Most of the throughput yield loss can be attributed to

mis-processing which can be due to equipment breakdown/malfunction during pro-

cessing, incorrect equipment settings during a setup change-over, or lots being sent to

a wrong workstation. These disturbances can result in an entire lot to be rejected.

Individual wafers may break because of physical stress or improper handling. Lastly,

any metrology step in the process may result in some or all of the wafers in a lot being

rejected based on observed results. Reworking of wafers affects line capacity but usu-

ally leads to increased cycle times without affecting throughput.

In this section, the focus will be primarily on discussing die yield loss related to con-

tamination. First, various sources of contaminants or particles during the wafer fab-

rication phase and their properties will be presented. Then the relationship between

contamination, defects, and faults will be discussed. Finally, the effect of contamina-

tion rates on die yield will be presented and some methods of estimating yield will be

analyzed.

2.3.1 Sources and Types of Contamination

Contamination or unwanted particles deposited on the wafer surface can come from

a number of sources during fabrication. Broadly, they can be classified as originating

from the environment, factory personnel, and equipment [14, 15, 16, 17, 18, 19, 20, 21,

22]. Particles in the environment can be introduced through the air supply system.

Modern factories use a variety of schemes to eliminate these particles or reduce expo-

sure of wafers to the ambient environment. A fraction of particles originate from the

personnel handling the wafers. Currently, more and more factories are implementing
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schemes to minimize human contact by automating wafer transport and equipment

setup, loading and unloading of wafers. Therefore, in a modern factory, particles orig-

inating from equipment are the most dominant source of contamination since they are

the most difficult to eliminate completely [14, 19, 23].

Particles in a piece of equipment can be introduced by many mechanisms such as

[14, 24, 25]:

1. defective or leaky equipment introducing unwanted material,

2. repeated use of equipment without preventive maintenance causing material

build-up inside chambers,

3. contaminated gases and chemicals used, and materials deposited on wafer sur-

face that get dislodged and re-deposited.

Particles can be solid or liquid in nature and of arbitrary shapes and sizes ranging

from sub-micron spherical objects to long strands of material covering a large area.

During high temperature steps some of the particles may evaporate and some,

depending on their adhesive properties, may get removed from the surface of the wafer

in subsequent steps such as cleaning steps. Resistivity of the particles is another

important aspect for consideration since they can directly alter local electrical

connectivity. Thus, the physical, chemical and electrical properties of particles are

important factors in determining the impact of contamination [24].

2.3.2 Contamination, Defects and Faults

Particles once deposited on the surface can lead to the formation of permanent fea-

tures in the layers being defined in subsequent steps. These undesirable deformations

or spot defects do not necessarily have the same shape and size as the original particles

[14, 24, 26, 27, 28]. An example of particle to defect transformation is shown in Figure

2.9. In this figure, an opaque particle is assumed to be deposited on the photo-resist

before the resist exposure step for defining the metal layer. The exposure step requires
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a mask for the entire layer but only a portion of it is shown in the figure. The metal

pattern after exposure, resist bake and etch, and metal etch is shown in the right hand

side of the picture. The particle here leads to the formation of an extra metal defect as

shown.

Note also that the defect causes the two parts of the metal patterns to be connected

to each other. These two metal patterns are most likely to be intended to be electrically

disconnected and, thus, in this case the defect causes a short between two nodes of the

intended circuit. A short can cause the circuit to malfunction under certain circum-

stances and in this case it is referred to have caused a fault - an example of defect to

fault transformation. A different kind of particle could lead to a missing material

defect which in turn could give rise to an open in a electrical net in the circuit. A more

detailed description of this transformation of contamination to defects and ultimately

to faults appears in [24, 25].

The type, size and location of a defect on the layout are the primary determining fac-

tors for a defect to cause a possible short or an open in a particular layer [29, 30, 31,

Figure 2.9 Particle to defect transformation.
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32, 33, 37]. There can be many defects in the IC, yet only a fraction of the defects actu-

ally may lead to a fault. In general, one can say that different defects can lead to dif-

ferent types of faults in a circuit depending on their type, size and location. In fact,

defects of the same type (extra metal, for example) can actually lead to different faults.

Moreover, for electrical nets which span a number of physical layers of an IC, one par-

ticular fault could be caused by many different types of defects.

This argument can be extended to the relationship between contamination and

defects. Different sources of contamination may give rise to the same defect type. This

happens when particles introduced at steps which logically define the same IC layer.

For example, particles from any of the resist spin, expose, bake, etch, and metal etch

steps could have lead to the extra metal defect. On the other hand, a particular type

of particle could result in different types of defects. A particle deposited on the photo-

resist, as in Figure 2.9, could result in extra material defect in polysilicon, metal1,

metal2, etc., depending on the step at which the particle has been deposited. Figure

2.10 summarizes the relationship between contamination, defects and faults as dis-

cussed above. Each directed edge in the figure represents a trace from the source of a

type of particle to fault type.

The process of formation of defects, as presented above, is a simplification of a num-

ber of complex interacting phenomena occurring in a fabrication process [24] which, in

reality, could produce defects in a number of fashions. A particularly important aspect

is the class of defects formed from other defects in the IC structure. An example of such

a transformation is shown in Figure 2.11. In this example, it is assumed that a small

defect is first formed on top of the oxide layer. Then a metal layer is deposited on top

of the oxide layer which conforms to the surface profile. The result is that a deforma-

tion forms in the metal layer which is larger than the original defect. Examples of

resultant failures could be the formation of a possible electromigration site, opens in
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subsequent layers, etc.[24]. If the oxide layer is planarized [34, 35, 36] before deposit-

ing metal an unwanted contact can form.

 Lastly, one must note that there are multiple definitions of IC faults which fre-

quently overlap. For example, in memory designs, a fault could be defined in terms of

electrical nets such as a bit line to ground short or a word line to bit line short. For the

same memory design, one could also consider more abstract fault definitions such as

Figure 2.10 Relationship between contamination, defects and faults.

Figure 2.11 Defect propagation in IC’s (a) normal processing leading to electromigra-
tion site and (b) with planarization of oxide layer leading to unwanted con-
tact.
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row or column failures. The two examples above are useful from testing and redun-

dancy calculations points of view, respectively. From a yield loss point of view it is often

more convenient to define faults as shorts or opens in a single layer, shorts between

layers, missing contacts, etc. The implication of this is that one needs to understand

the relationship shown in Figure 2.10 with alternate definitions of faults.

2.3.3 Die Yield Models

Yield loss due to particles is defined as the average fraction of defective die per

wafer. This is equivalent to defining yield loss as the probability of occurrence of at

least a single fault in a die. The probability of occurrence of a fault depends not only

on the types, rates and sizes of the particles deposited on the wafer surface but also on

the attributes of each of the transformation processes from particles to defects and

ultimately to the faults. Figure 2.12 summarizes the different transformation pro-

cesses that one must consider to predict the probability of occurrence of a fault on a IC.

Most of the research to date has been concentrated on the transformation of defects

to faults and, thus, any quantitative analysis of yield loss is based on such formula-

tions [14, 15, 23, 38, 39, 40]. This is mainly because of the fact that the defects are

physically observable entities whereas the occurrence of particles on the wafer surface

Figure 2.12 Particle and defect transformation processes in wafer fabrication.
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is more difficult to observe. Recent advances in metrology equipment to monitor some

of the particles on the surface of wafers is changing this situation [4]. Nevertheless,

analyses based on defects provides an adequate starting point for predicting yield loss.

In the early 1960’s, defects were assumed to be dimensionless points and any such

defect within the area of an IC was assumed to cause a failure [41, 42]. Based on the

point defect model, the Poisson model [41, 43] of yield was developed. A number of

variations of this model were also developed and a complete description of these mod-

els can be found in [15, 30, 33, 38, 44]. Soon these models were found to be inadequate

and a number of modifications were proposed subsequently. Modifications were made

to assumptions underlying three aspects: number of defects on the wafer, the size of

the defects and the dependence of fault occurrence on the IC layout.

The number of defects per wafer is characterized by a distribution function esti-

mated from observed data. Some examples of distribution functions for defect density

(number of defects per unit area) are shown in Figure 2.13 [41, 45, 46, 47, 48, 49]. This

is a common way of modeling inter-wafer defect density variation commonly observed

in industry [38, 50, 51, 52, 53, 54, 55, 56, 57]. Defects on the surface of the wafer are

usually observed to be uniformly distributed but some researchers have observed spa-

tial variations in the defect density [58, 59, 60]. One of the common observations is

that defect density varies radially on the wafer. The important point to note is that one

must consider the nature of defect density observed for a particular fabrication line in

analyzing yield loss.
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It has also been observed that defects occur in various sizes that can characterized

by a size distribution function. An example of a commonly used size distribution func-

tion is shown in Figure 2.14. The form of this function can be written as [24, 61]:

Figure 2.13 Defect density distribution functions.

Figure 2.14 Example size distribution function.
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(2.1)

where, R is the defect radius, xo and p are the parameters of the function f(R). Other

variations of this distributions, such as in [62, 63, 64, 65] have also been proposed. In

these formulations, defects are viewed as circular two-dimensional deformations.

From a practical standpoint, the minimum feature size is usually greater than xo and

thus in the range of interest the probability of occurrence of a defect of a particular

size, R, is inversely proportional to some power p of R.

For a given IC layout design, defects smaller than the minimum feature size obvi-

ously cannot cause any faults. Defects slightly larger than the minimum feature size

can cause faults but they have to be located in such a way as to physically cause a short

or an open as the case may be. Larger defects, on the other hand, are more likely to

cause a fault in the IC. The dependence of layout sensitivity to the defect size is ade-

quately captured by the critical area concept [29, 66, 67, 68, 69]. Critical area for a

defect size, R, is defined as the area where the center of the defect must be located in

order to cause a fault. For the case of a short between two metal lines, the critical area

is illustrated in Figure 2.15. In the figure, the critical area is shown for three defect

sizes in order to illustrate the greater sensitivity of the layout to larger defects.

Yield models based on the critical area concept were developed and extensively stud-

ied in the past [see e.g., 14, 15, 29, 38, 70]. In general, yield for a given defect type char-

acterized by the size distribution f(R) and mean defect density Do can be written as

[29]:
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where, Ac(R) is the critical area as a function of defect size and s is the minimum

feature size of the layer. The above formula is a variation on the basic Poisson yield

model. One can look at Equation 2.2 as partial yield, Yi, for a given type of defect and

fault type (considered in pair) i. The total yield, Ytotal, can then be written as:

(2.3)

where, Yi is the partial yield and is given by Equation 2.2. In the above equation the

partial yields are assumed to be independent of each other. This is accomplished by

selecting the defect types and fault types appropriately. However, this is only possible

with static yield estimation where none of the particle and defect parameters change

with time. As discussed later in this chapter, in a dynamically changing situation such

an assumption may not be valid. One can also incorporate the defect density variation

by appropriately compounding the exponent in Equation 2.2 as:

(2.4)

Figure 2.15 Critical area for metal shorts between two nets - (a) for defect size R1, (b)
for defect size R2 > R1. and (c) for defect size R3 > R2.
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where, g(D) is the distribution function of defect density. The argument for two

dimensional defects could be easily extended to three dimensional defects by defining

critical volume instead of critical area[71]. The assumptions made above give only

approximations of the yield and, hence, any method to accurately predict yield must

use simulations with tools such as VLASIC [72] or DEFAM [33, 73] - two dimensional

defect to fault simulators - or even more accurately with CODEF - three dimensional

contamination to defect to fault simulator [24, 25].

2.4 Testing Process

During testing, every die on each wafer is tested using different types of tests

applied in a predetermined sequence. These tests can broadly be classified into four

types, applied in a sequence: parametric, basic functional, ac/delay and full functional

tests. Parametric tests are performed on some of the specially designed test structures

on each die (in the scribe area). These tests measure factors like threshold voltage,

resistances, capacitances, etc. Functional tests, on the other hand, are performed to

make sure that the fabricated die are operationally suitable for performing the ac or

delay tests. The basic functional test ensures some of the functionality of the device

under test. Delay testing of digital circuits is used to ensure that the timing of the sig-

nals meet the specifications. Full functional test involves subjecting the IC to a longer

set of stimulus to ensure as much of the functionality of the IC as possible. This

requires a set of predetermined stimuli to be applied to the IC and observing the

response.

For large circuits, the set of stimuli required to completely test the circuit is also

very large. Thus test sets are prepared in a way so as to cover as many failures as pos-

sible. This involves first evaluating the different ways failures can occur in the circuit

and obtain a fault list. To accomplish this, one can tabulate the targeted faults manu-

ally or automatically using simulation. Creating such a fault list depends on the fault
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model assumed. A number of fault models [see e.g., 74, 75, 76, 77] are described in the

literature such as stuck-at fault model, the bridging fault model for shorts [78, 79], etc.

The important point to note here is that the process of generating the set of input stim-

ulus - or test generation process - also depends on the fault models assumed. For large

digital circuits tests are sometimes generated automatically using automatic test pat-

tern generators (ATPG) [81]. More detailed descriptions of testing and test generation

can be found in [79, 80, 81, 82, 83, 84, 85, 86, 87]. There are three characteristics of a

test set that must be considered: effectiveness of the test set, the time required to

apply the tests and usefulness of the results in further analysis.

Effectiveness of a test set is usually measured in terms of an estimated metric called

fault coverage [80, 82, 88, 89, 90, 91]. Fault coverage is a measure of the fraction of the

total number of faults from the fault list that a test set can detect. Fault coverage is

rarely 100% because of two reasons. First, some faults may be undetectable either

because test generation is impossible or because the fault model is inadequate, and

second, most ATPG tools have a prescribed time limit to find a possible test which

when exceeded causes the computation to abort. Less than a 100% fault coverage nat-

urally implies that some of the faults will be undetected [92, 93, 94]. The escape rate

is a function of the detectability of a fault as well as the probability of occurrence of a

fault. Probability of occurrence of a fault can be estimated [82, 83, 85] in a manner sim-

ilar to yield computation by Equation 2.2, for example. There is another aspect of

imperfect testing and that is identifying a perfectly functional die to be faulty. This is

referred to as false reject (overkill) and is usually difficult to estimate.

One can look at the testing step in the same way as a fabrication equipment [3, 95,

96] from an operational viewpoint. Then the time interval can be divided in the same

manner as in Figure 2.8. In the case of testing, equipment setup involves loading the

right test set. Loading involves mounting the wafer (or packaged die as the case may

be) on the tester. The difference arises in the actual time required to test a die. In the
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case of wafer testing, each chip is probed with the help of a probe-card. The test

sequence is applied and the test aborted when a fault is detected. Thus, the entire test

set may not need to be applied and the time required to perform this step is dependent

on the occurrence of faults. After a die is tested, the probe card is moved to the next

die to be tested on the wafer till all the dies are tested. The defective die are later

rejected when the wafer is diced into individual ICs. In the case of testing of packaged

ICs, there are a few differences. First, instead of a probe card a test card is used. Sec-

ond, the test sets used may be more extensive. Specifically, tests may be conducted

with different supply voltages, and after subjecting ICs to elevated temperatures

(Burn-in test). But such extended tests result in increased testing time and thus are

only performed for a small sample of the die which pass the first sequence of tests.

When yield is high these tests may be performed for most of dies and where perfor-

mance is of importance (for DRAM, microprocessor, etc.) such extended tests may be

performed on a larger sample. In the extreme case such as for military applications,

these tests are performed for all the ICs.

In the stable production phase, the response of the chip to the applied test is only

used to accept or reject the chip. But during the yield learning phase, it is important

to identify the probable cause of the failures detected [97, 98, 99, 100]. This means that

one must be able to analyze the test results in such a manner as to provide some clue

about the nature of the failure. One mechanism is to classify (or bin) the test result

according to the test set in which the fault is detected among all test sets. Test sets are

usually designed to test particular partitions of a design for a large circuit. This helps

to narrow the region of the location of the fault. In most cases, this is the extent to

which a test result can be analyzed. One could, however, design the test set in such a

way as to provide more diagnostic information [100, 101]. One could also analyze the

test results in more detail off-line but this requires that the test response must be

available for later analysis. Making test results available is a time consuming task
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and is not a preferred option in a production setting. This aspect of usability of the test

results has an important bearing on the efficiency of the defect diagnosis process and

it will be discussed in the next section.

2.5 Failure Analysis Phase

Failure analysis can be broadly divided into two classes of activities in a manufac-

turing line: in-line monitoring of partially fabricated wafers and off-line defect diagno-

sis of completely fabricated wafers or packaged ICs. The nature of analyses are

different for the two classes and together they are invaluable in controlling the con-

tamination related problems in a manufacturing line. In this section, both the opera-

tional aspects and the effectiveness of these activities will be discussed.

2.5.1 In-Line Particle Monitoring

Particle monitors are employed at a number of intermediate steps defined in the

process recipe. Operationally, there are treated as any metrology equipment as shown

in Figure 2.7. Particle monitors scan the surface of the wafer under observation with

laser beams. The light scattered and reflected from the surface of the wafer is received

by one or more sensors as shown in Figure 2.16. The sensed light energy is analyzed

using specialized tools (software and hardware) providing a variety of information on

the particle or defect characteristics of the wafer under investigation. The type of

information generated depends on the particular type of equipment which in turn gov-

erns the manner in which they are used [4, 102, 103, 104].

The simplest particle monitor is one which is able to scan only un-patterned wafers

(wafers with no IC features on it). This type of equipment cannot distinguish between

surface deformations (or defects) and IC features. They are usually very fast and take

only a few minutes to scan a few square centimeters. To use this equipment bare

wafers are introduced at some intermediate point in the process recipe. After each step
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the surface is monitored for particles added at that step. For example, one can monitor

particles added to surface after oxidation, metal deposition and resist deposition step

in that order [102, 105]. This kind of characterization is useful for evaluating the rel-

ative contribution of each piece of equipment in terms of particles. This kind of char-

acterization is referred to as short loop monitoring [105, 106]. The number of steps in

a short loop is very small compared to the entire process recipe and is useful for quick

feedback on the particle rates in the line. Figure 2.17 illustrates short loop monitoring

in a manufacturing line.

Figure 2.16 Operating principles of particle monitors

Figure 2.17 Short loop monitoring.
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Monitors which can scan patterned wafers employ more sophisticated techniques

for image processing and are thus more expensive and slower [102, 107, 108]. These

types of equipment use one of two methods to distinguish between IC feature and par-

ticles (or defects). One method is to compare the same region of two or more adjacent

IC to filter out the common features. The idea is that it is highly unlikely for two dif-

ferent ICs to have a particle in exactly the same location. The second, more complex,

method is to compare the image obtained with the IC layout stored in the database.

Such monitors have the advantage that the actual production wafers can be sampled

and are thus likely to provide more useful data.

Not all particles on the wafer can be detected by particle monitors [102]. The detect-

ability of particles depends on a number of interacting factors. The first is the size of

the particle. Smaller particles, usually less than a micron, are very hard to detect. Sec-

ondly, the reflectivity of the surface below the scanned surface plays an important role.

Surfaces with higher reflectivity provide more dependable results. Due to this particle

monitoring is usually employed in the back end of the line where interconnects are

defined. In the case of patterned wafer monitoring, the orientation of the IC with

respect to the light source is an important determining factor. Certain orientations

provide better resolution than others. There are other techniques to detect particles

as well and these can be found in [109, 110, 111, 112].

Particle monitors can be used with different degrees of accuracy and efficiency. In

the fastest mode, only the location can be obtained and that too with some error which

can be quite large in some cases. In the most accurate slowest mode both the location

and size can be obtained with a certain degree of accuracy. Further, one can perform

computations to estimate the likelihood that the observed defect results in a fault.

This could be achieved by estimating the probability of a failure given the location, size

and the process step of occurrence of the observed particle. Due to inaccuracies in

determination of these parameters such an estimation may not be possible. However,
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one can trade off the accuracy against speed depending on how the data obtained is

used. In the slowest mode, it can easily take 20-30 minutes just to scan a single die.

The throughput rate achievable depends on the sampling rate employed in the line.

Sampling rules have three components. The first is the rate at which lots are sampled,

in the extreme case, all lots may be used. The second is the number of wafers out of

each lot selected for scanning which is usually about 3-4 wafers per lot. The third is

the fraction of the area on a wafer actually scanned which is usually about 4-8 dies on

a wafer. Depending on the particular sampling rules used and accuracy desired, the

time required for one lot could be anywhere from 30 min to several hours. This is an

important consideration since particle monitors are costly equipment and one may

require many pieces of equipment to meet the effectiveness and throughput require-

ment [108, 113].

The manner in which the data is obtained from particle monitoring essentially

decides its real effectiveness. From the point of view of controlling the manufacturing

line, there are two aspects that need to be considered: first, to filter out those wafers

which have excessively high probability of having low yield and second, to correct the

situation by finding the source of the problem.

Filtering or screening of wafers can be accomplished by setting a threshold function.

Let us assume that only the number of particles/defects is available from the monitor-

ing equipment. For a given product one can set a limit on the number of particles

which when exceeded, the wafer is rejected. If wafers are rejected early enough in the

process, then there can be some saving in the costs arising out of subsequent process-

ing steps. But one has to quantify the relationship between the number of particles

observed and the expected yield. A large number of particles does not necessarily mean

a low yield since the sizes of these particles also play an important role. Of course, if

the threshold is set high enough then the risk can be low. For products with very low
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profit margin, such a strategy can result in some cost savings and may even be desir-

able.

Corrective actions can be initiated on pieces of equipment suspected of introducing

the particles at a higher rate than the set limits [115, 116]. Locating the piece of equip-

ment responsible is a relatively simple task since, in all likelihood, only the equipment

used in the previous step is the source. Care must be taken, however, to not react too

quickly in correcting the situation since, the observed phenomenon could be a stray

incident. When excessive number of particles are observed consistently over a few lots

only then should corrective actions be attempted. The nature of corrective actions and

their effects will be dealt with later in this chapter.

The use of data generated out of particle monitors may not be limited to controlling

the line alone. One can possibly correlate all the data gathered on a particular wafer

with the results of testing and generate a list of likely candidates for particles/defects

for each defective die on the wafer [39, 105, 115]. This can be useful for compensating

the lack of information available out of the testing process and thus aid defect diagno-

sis. One can create trend charts for particles for each piece of equipment and use these

to guide the defect diagnosis process also. Both of these aspects of using particle mon-

itoring for aiding defect diagnosis are discussed in the next section.

2.5.2 Defect Diagnosis after Fabrication

In this section, the focus will be on defect diagnosis of fabricated wafers. Diagnosis

of defects in packaged ICs is essentially similar to that of wafers and the important

differences will be pointed out where appropriate. A single cycle of defect diagnosis

begins with a sample to be analyzed and ends with identification of the equipment (or

any other source) responsible for the observed defect.

As mentioned earlier, a small fraction of the wafers may be selected after probe test-

ing for failure analysis using some sampling rules. These sampling rules could simply
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be to select a wafer with the highest number of defective ICs. More complex sampling

rules can be used when more information can be extracted from the probe testing

results. For example, when the dies fail to pass a particular test suite more frequently

than others, the corresponding wafers can be selected for failure analysis.

Once a wafer is chosen for failure analysis, an attempt is made to diagnose the dom-

inant cause of the faults found in some or all of the defective dies in the wafer. This is

usually a three stage process: defect localization and identification, analysis of the par-

ticle causing the defect, and identifying the possible set of equipment as responsible

for the particles [101]. Of these, the first step - defect localization and identification -

is the most time consuming and uncertain, but it is a vital first step in successful anal-

ysis [117, 118]. Particle analysis is also time consuming, requiring very expensive

equipment, but it may not be necessary where the shape, size, and location of the

defect is enough to identify the particle source. In general, all three steps are essential

for defect diagnosis to be efficient.

Defect localization is mainly achieved through direct observation methods using

three types of microscopy: optical, scanning electron (SEM), and transmission electron

microscopy (TEM) [119, 120, 121]. An optical microscope has a resolution of about 1µ

and maximum achievable magnification about 1000X. The drawbacks of using an opti-

cal microscope are: the portion of the die to be searched has to be fairly small when

dealing with small (< 2-3µ) defects which are unlikely to be located otherwise. Second,

defects in lower levels of the IC (polysilicon for example) may be masked by the upper

levels (metal for example), making it necessary to resort to higher magnification using

scanning electron microscopy (SEM - with resolution better than 100 angstroms

[120]). Defect observability could be greatly improved by selectively stripping away the

layers [122, 123] and cross-section analysis using TEM. However, one could also strip

away the defect in the process, rendering such analysis ineffective.
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There are several other methods of defect localization using liquid crystal analysis,

voltage contrast microscopy, electron-beam probing [124, 125, 126, 127], etc., requiring

extensive sample preparation and full electrical connectivity. Hence these methods are

more suitable for analyzing defects in packaged ICs where electrical analysis is sim-

pler to perform. Also these methods tend to analyze only the surface or near surface

defects, leaving the ones in the lower levels masked. Removal of certain layers may be

necessary to improve “observability” [122] but it automatically excludes the possibility

of an further electrical probing through normal contact pads on IC.

There are methods to electrically probe some of the internal nodes of the IC under

test which include selectively etching away a small area of the IC to expose the metal

lines for micro-probing [128, 129]. Sometimes, a small area is etched and filled with

metal using focused ion beam (FIB) [130] techniques to reach a lower metal layer.

These methods are time consuming and are applied when micro-probing is necessary.

One could also use analytical techniques on the test results to obtain tighter bounds

on the defect neighborhood and reduce initial uncertainty [101, 131, 132, 133]. Such

techniques, although very promising (and non-destructive), are not yet widely used in

practice. One exception is the memory circuit where one can exploit the regularity of

the circuit and layout to localize defects [134, 135, 136]. Here, the point in the

sequence of test vectors at which the circuit fails indicates the locality of the defect.

This is used to create bit maps which greatly speeds up the defect diagnosis process.

In summary, the efficiency and accuracy of the defect diagnosis process primarily

depends on the defect size and the amount of uncertainty in the area and layer to be

searched. The entire process of defect localization can be looked upon as a process of

reducing this uncertainty which is primarily a function of the design of the product

and the type of testing strategy used.

One outcome of this uncertainty is the rate at which different defect types are suc-

cessfully identified. Defects in the top layer are, in general, easier to locate and iden-
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tify than ones in lower layers. One can expect any easily diagnosable faults to be

identified quickly and, as a consequence, the corresponding defects will “seem” to be

the dominant failure mechanism. However, as the causes of the diagnosable faults are

removed, the yield loss will be increasingly dominated by other less diagnosable faults.

The dominant failure mechanism will keep shifting from one fault type to another. The

situation could become more complex when defects in upper layers are caused by some

other defects or particles in lower layers. This inter-dependence will be further elabo-

rated in the next section.

Once a defect is localized one can possibly identify the step which introduced the

particle causing the defect. Where this is not possible, more elaborate techniques can

be used to identify the chemical composition of the particle using techniques such as

energy dispersion spectroscopy (EDX) and wave dispersion spectroscopy (WDX) [118].

These methods require the preparation of thin cross sections of the sample which itself

can cause enough damage to the IC to render any further analysis useless. Sometimes

the energy of the scanning beam can cause the particle to disintegrate.

Once the origin of the dominant (or most frequently occurring) defect is narrowed

down to a few steps in the fabrication process one has to pinpoint the source. It could

be one of the materials used during processing or the equipment itself because of a

leaky valve, contaminated chambers, etc. Usually a bank of several equivalent equip-

ment are used in parallel to accomplish a given processing task (like resist spin-on) to

meet the throughput requirement causing the source of the particle to remain ambig-

uous. To resolve this ambiguity one can resort to secondary sources of information like

test structures [137, 138, 139], tracking records of the wafers analyzed, history of each

piece of equipment, etc. Data from in-line particle monitors can be very useful in pin-

pointing the piece of equipment.

Let us define the throughput rate of defect diagnosis to be the number of successful

diagnoses performed per unit time (one day, week, etc.). Treating the operation of
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defect diagnosis equipment as any other fabrication or testing equipment the time

components can then be divided as in Figure 2.8. However, the time spent in equip-

ment for analysis is dependent on the defect characteristics of each die. Thus some

defects can take very long to diagnose and some may not be diagnosable at all. In such

extreme cases, the analysis may be aborted. Hence, observed throughput time is

dependent on the relative proportion of diagnosable to undiagnosable faults in the dies

analyzed.

Research in the area of particle monitoring and especially defect diagnosis has been

limited to finding better mechanisms to perform the analyses. Currently no models or

methods have been investigated to judge the efficiency and accuracy of these processes

in the context of yield learning. The rate of yield learning depends to a great extent on

the rate of correct feedback to the wafer fabrication process so that problems can be

corrected. It also depends on the change in particle/defect characteristics as a result of

corrective actions which is dealt with in the next section.

2.6 Corrective Actions in Manufacturing

Corrective actions are performed on the identified defect source when sufficient con-

firmatory evidence is collected for the source [140]. The frequency with which a par-

ticular resource is held responsible can also be used as a measure of the sufficiency of

evidence. The corrective action could simply be setting the equipment correctly or

changing certain simple parts. In this case, correction can be performed without dis-

rupting the processing sequence. On the other hand, if the piece of equipment needs

more complex repair or cleaning, it may need to be taken off-line.

Taking a piece of equipment off-line may not be preferred since this disrupts the flow

of wafers by reducing the capacity of the line temporarily. In such a case, corrective

actions may be performed when the equipment is idle (unlikely to be of sufficient dura-

tion) or, during the next scheduled maintenance cycle [3]. In addition, some policy
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must be employed to ensure avoidance of bottlenecks due to many pieces of equipment

being taken off-line. The duration of time required to correct the situation depends on

the availability of maintenance resources and the type of problem being corrected. A

major overhaul of the equipment can easily take several days, and cleaning of equip-

ment, can take several hours.

After the corrective actions are applied and the equipment is put into normal oper-

ation, the observed defect characteristics like density, size distributions, etc., are

expected to change so that the number of faulty chips per wafer is reduced. Depending

on the particular particle source and type, the change in characteristics may be any-

where from little or no change to complete removal of the generating mechanism [140,

141, 142, 143]. For example, repairing a leaky valve can remove a particle source com-

pletely. On the other hand, cleaning a piece of equipment can only reduce the rate of

introduction of particles causing faults in the IC.

The process of repairing or cleaning may affect the rate of introduction of particles

of different sizes differently, for example, the rate of introduction of larger particles

may be affected more than the smaller ones. This means that both the particle size and

density distributions could be affected. One can describe the process of repairing/

cleaning as a probability function which describes the probability of removal of a par-

ticle of a certain size. With this assumption one can estimate the new distribution of

size and density by appropriately convoluting the distribution functions for particles

with the probability function for cleaning [143]:

(2.5)

where, f(N,R) is the joint probability distribution of number, N, and size, R, of

occurrence of particles, and g(N,R) is the joint probability distribution of cleaning the

particles. Note that the number of particles, N, is simply related to the density, D, of

the particles. In practice, however, joint probability distributions of particles are not

available. Only observed characteristics for defects are available and in addition, the

fnew N R,( ) fold N R,( ) g N R,( )⊗=
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density and size are assumed to be independent parameters - which is implicit in

Equations 2.2, 2.3 and 2.4.

Let us for a moment concentrate on the particle-defect-fault relationship shown in

Figure 2.10. A single type of particle can affect more than one layer, cause more than

one defect and result in multiple faults. Any change in particle characteristics can

result in more than one defect rate to change and thus affect the rate of observed faults

of multiple types. The models presented for yield earlier are thus not directly applica-

ble.

This inter-dependence also affects the relative rate of change in defect rates (as a

result of failure analysis activities). For argument’s sake let us assume that polysilicon

defects also cause most of the defects in the metal layer. Since metal defects are easier

to identify and locate, their source will be “discovered” quickly. In this case, if the cause

is corrected then polysilicon defects will be reduced simultaneously. Such inter-depen-

dence in the rate of change in defect attributes is not easy to capture using the yield

models presented earlier.

2.7 Yield Forecasting - Discussion

Previous techniques to forecast yield were based on a macro view of the manufac-

turing line where the focus was on analytically describing yield as a function of time.

Essentially, yield is expressed as a time series formula where at each time step, yield

is expressed as a function of yield at the previous time step. Thus, yield Yn at time step

n can be written as [144, 145, 146, 147]:

(2.6)

where, b is a constant (learning rate) greater than 1.0. In another method, a

refinement was made to this by replacing yield with defect density in Equation 2.6 and

then using an yield model to map defect density to yield [147].

Yn bYn 1–=
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 The value of the learning rate, b, is assumed to be a parameter that can be extracted

for a particular product and a given manufacturing line. But the learning rate of one

product does not provide any knowledge of the learning rate for another product.

Extrapolation of learning rates from historical learning curves can be difficult for a

variety of reasons [148]. For example, failures can be more difficult to diagnose

because of smaller feature size, larger die size, more interconnect levels, etc. Feedback

cycles can be much longer because of increased cycle times, more types and sources of

contamination, etc. Presence of shorter feedback cycles due to short loop monitoring

can alter the learning rate. These are but a few of the reasons that prevent one from

using such simple models in an effective way.

There is currently no methodology to model the yield learning process discussed in

this chapter. In the next two chapters such a methodology and its corresponding mod-

els will be presented that effectively capture the important attributes of yield learn-

ing.
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Chapter 3
Methodology to Predict Yield Learning Curves

In this chapter, a methodology for prediction of yield learning curves for a semicon-

ductor manufacturing line is presented. This methodology attempts to mimic the yield

learning process described in the previous chapter.

3.1 Yield Forecasting - An Overview

The yield learning process was described in the previous chapter as a sequence of

events starting with the introduction of particles, followed by detection of defects and

identification of their source, and concluding with eliminating the source of particles.

The rate of yield learning depends on:

1. The complexity of relationship between particles, defects and faults;

2. Ease of defect localization which depends on:

a. size, layer and type of defect,

b. level of “diagnosability” of the IC design and,

c. probability of occurrence of catastrophic defects;

3. Effectiveness of the corrective actions performed;

4. The timing of each of the events mentioned above;

5. Rate of wafer movement through the process.

The methodology to forecast yield as a function of time must, thus, be able to capture

all of the above factors. The technique underlying this methodology is to mimic the

manufacturing process using a simulator. In the next section, the basic properties of

yield learning process which needs to be simulated is presented.
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3.2 Characteristics of Yield Learning

In order to characterize the yield as a function of time, let us first concentrate on a

single product manufacturing line. Let us also assume that only one of the pieces of

equipment produces a single type of particle resulting in one type of defect. Under-

standing of this simplest possible case suffices to capture the essence of the yield

learning process. The yield versus time curve for this scenario resembles the staircase

function shown in Figure 3.1. Here, Tf is the time required for analysis and detection

of the failure mechanism leading to process intervention. Te is the time needed for pro-

cess correction which decreases contamination levels and the time required for the

new process parameters to be effective. Tr is the time interval after which a change in

yield of the fabricated wafers is observed following process corrections. The total time

required for yield change to occur is given by Tc = (Tf + Te + Tr) and the net change in

yield is Yc. Value of Yc is determined by the new level of contamination.

Figure 3.1 Key events in yield learning process.
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Estimating Tr is equivalent to estimating the cycle time for a factory albeit partially

starting from an intermediate process step until the last step. Thus, it is the sum of

the raw processing time (RPT) and the queuing time for wafers waiting between pro-

cess steps. One of the major contributors to the queuing time is the downtime of the

equipment. Note that the factor Te may contribute to the equipment downtime

depending on the outcome of failure analysis. Tf, the time needed to detect and localize

the defect depends on a number of factors as presented in the previous chapter. The

change in yield, Yc, on the other hand depends on the correctness of the diagnosis and

the efficiency with which the contamination rate can be reduced as a result of the cor-

rective actions.

Thus, even for a simple factory the inter-relationship between various attributes

leading to yield improvement is quite complex. Moreover a realistic situation involves

a multi-product facility with more than one source of contamination, many defect

types, and several sampling and failure analysis strategies. In this case, the time to

diagnose and correct different defect types will be interdependent because, for exam-

ple, defects in lower layers will be “overlooked” in favor of defects in upper layers as

described in chapter 2. The variability in the correctness of diagnosis will be affected

since multiple sources of one type of contamination leads to ambiguity.

Note that Figure 3.1 depicts yield improvement cycles for only one type of defect

originating from one source. In reality there will be a number of such cycles overlap-

ping in time with each other. The yield learning curve for a product is, thus, a combi-

nation of all such individual overlapping learning curves.

3.3 Key Simulation Requirements

The simplified characterization of yield learning presented in the previous section

can be easily modeled as the feedback cycle shown in Figure 3.2. The first step is to set

the initial parameters of the particles for each source. Particles are introduced in a
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wafer at the start of the cycle. After a certain delay (Tr) defects are identified and the

wafer is sampled for further analyses. After another delay (Tf) the source is identified

and corrective actions are initiated. Lastly after some delay (Te) corrective actions

become effective as a change in particle parameters.

Figure 3.2 represents the general structure of the algorithm for predicting yield

learning curves. In order to correctly mimic a manufacturing line a number of such

cycles, and their inter-dependencies have to be considered. Yield learning, as the cyclic

sequence of steps described above is well suited to simulation. The production of

wafers in a manufacturing line can in fact be thought of as a sequence of many such

steps or events where each event affects some or all of factors Te, Tf, Tr and Yc. To

accomplish this goal, an adaptation of a well researched discrete event model [1, 2, 3]

has been used. In its simplest form an event is described by the following three char-

acteristics:

1. Time instance at which the event is activated.

2. Source and destination of the event.

3. Function to be performed after an event is activated.

Figure 3.2 Model of yield learning.
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The time instance indicates when the function defined by the event is performed, or,

in other, words when the state of the factory is changed. Sources and destinations are

factory entities which are responsible for, and affected by, the event, respectively. After

an event is activated two things can happen. First, some characteristics of the

manufacturing line are altered e.g., wafers are loaded into a piece of equipment for

processing. Second, a new set of events must be generated, in the above case the

initiation of processing of wafers, after a known interval of time from the first event.

The evolutionary nature of events for processing equipment in a manufacturing line

is illustrated in Figure 3.3.

One can say that there are two sets of models needed: one which models the timing

of the factory, and another which alters other measurable characteristics of a factory

besides time. This makes it easier to view the operational aspects of a factory indepen-

dently of  factors such as yield related characteristics. In some cases, however,  these

two may be related. For example, timing of failure analysis must be dependent on the

simulated defect characteristics and the probability of their occurrence. Similarly, the

number of particles deposited on a wafer may also depend on the amount of time a

wafer spends in processing equipment or even waiting between steps.

Figure 3.3 Event evolution.
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Note that the time interval between two related events can be zero or indefinite.

Thus, two special types of events: waiting-events and zero-delay events, are also

required to facilitate simulation. Zero delay events are useful for the collection of sta-

tistics or to perform other calculations. Figure 3.4 shows a chain of event evolution to

illustrate this concept. Here there are two types of events: primary and secondary

events. Primary events describe the operation of the manufacturing process and sec-

ondary events are used to extract relevant data before and after an operation. Waiting

events, as the name implies, are activated only by the occurrence of another event. For

example, when cleaning is necessary the equipment must wait until it finishes pro-

cessing the loaded wafers.

Based on the nature of change in state of the manufacturing line, the primary events

can be classified as being related to:

1. Movement of wafers through fabrication steps;

2. Introduction of particles and formation of defects;

Figure 3.4 Application of Zero delay events.
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3. Detection of defective ICs (testing);

4. Failure analysis activities as a result of:

a. Particle monitoring and,

b. defect diagnosis of fabricated wafers.

5. Corrective actions.

The primary requirement of the simulator is the ability to simulate wafer movement

in a fabrication line taking into consideration such aspects as the product, process rec-

ipes, equipment, personnel and operating rules. To model yield loss due to particles,

the simulator must be able to introduce particles, and transform particles to defects

and ultimately to faults for each wafer. The simulation must be able to take into

account the random nature of the particle introduction and the transformation pro-

cesses. Hence, some variation of Monte Carlo [4, 5] simulation capability must be

achieved to estimate manufacturing yield loss. Wafer testing simulation must factor

in both the time required for test execution and the effect of imperfect testing on the

observed yield. Testing time should be made dependent on the rate of defective ICs.

Particle scanners should be simulated taking into consideration the sampling rules,

variability in the accuracy of detection and the efficiency of equipment. Fabrication

line control policies such as wafer rejection and initiating corrective actions must be

taken into account in modeling particle scanners. Defect diagnosis of fabricated wafers

must be simulated as a sequence of four steps: sampling of wafers, defect localization,

particle identification and identification of source. Wafer sampling should be guided

by certain rules which depends upon the outcome of testing. Efficiency of defect local-

ization should be a function of defect characteristics, product design and initial uncer-

tainty due to lack of information from testing activity. Uncertainty in particle and

source identification should be modeled as well.

Next, a model to simulate the effect of corrective actions is required which is consis-

tent with the model for yield simulation. This model must take into account continu-
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ous changes in size and density of particles as well as an abrupt removal of the particle

source. Ideally, corrective actions should also take into account changes in particle to

defect and defect to defect transformation processes.

To achieve the capability of performing cost revenue trade-off studies, the simulator

must also be able to take into account the capital and operating cost of fabrication,

testing and failure analysis equipment. One should be able to estimate the cost of

wafers, cost of good die and the number of good die fabricated (or productivity). The

cost calculations must be dependent on the usage of various manufacturing resources

(e.g, equipment, materials, etc.) in such a way that one can perform “what-if” analysis.

In the next chapter, detailed formulation of specific modeling requirements for each of

the required simulation capabilities is presented.
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Chapter 4
Simulation Models

In this chapter, the models needed for yield learning simulation are presented in

detail. The models are of seven distinctively different classes:

1. Wafer movement simulation models;

2. Yield simulation models;

3. Models for simulating the testing process;

4. Particle monitoring simulation models;

5. Models for the defect diagnosis process;

6. Models for simulating the effect of corrective actions;

7. Cost models.

In this chapter, modeling assumptions and representative equational forms are

presented.

4.1 Wafer Movement Simulation

The wafer fabrication phase is modeled as being comprised of five entities: equip-

ment, products, process recipes, operators and factory rules. The models of these enti-

ties are as follows.

Manufacturing equipment is organized as described in Chapter 2. The factory is

divided into work areas consisting of one or more workstations which in turn are made

up of one or more pieces of equipment generally capable of performing the same pro-

cessing steps. Each workstation is associated with a queue (storage area) where

incoming wafers are temporarily stored. Each piece of equipment is characterized by
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its capacity expressed as the number of wafers that can be processed in a single run.

The minimum allowable number of wafers in a single load is a lot. Batch equipment

can have a capacity greater than the lot size. The piece of equipment is also associated

with a set of operating rules defined later. Setup, load and unload times are defined

for a piece of equipment. Equipment processing time is modeled as a sum of required

process time (defined by recipe step) and equipment timing error defined as a distri-

bution function with a given mean and variance.

Each product is identified by a name and a unique design associated with it.

Depending on a manufacturing line operating policies, sometimes many different

products can be the same design. The main parameters of a product are its lot size,

wafer size, size of die and the number of dies per wafer. Each product is also associated

with a process recipe to be used in its manufacturing. Wafers are released into the fac-

tory according to the wafer generation mechanism. Wafer generation is conceptually

performed by a virtual piece of equipment. The wafer release rate can be defined in

two ways, either by a distribution function with a given mean and variance of wafer

starts per week (WSPW), or by a time dependent function of WSPW.

Process recipes consist of a number of steps to be performed in a particular

sequence. Each step of the recipe is identified by a name, the workstation to be used

and processing time. In some cases, like a metrology step, processing time can vary

and in this case the process step is associated with a process time estimation model.

The real processing time for a single run is estimated by adding equipment timing

error.

Operators in the line are assigned to each workarea and it is assumed that any

assigned operator can operate any piece of equipment in the workarea. The function

of the operator is to set up the equipment, load and unload wafers and move the wafers

as and when required depending on their availability.
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Factory rules include lot release and dispatch rules, and equipment load and setup

rules. Lot release rules defines the manner in which lots are to be introduced into the

factory for each product which could be just one lot at a time or several lots in a group.

The lots are placed in the queue of the first workstation defined by the process recipe

for that product. Lot dispatch rules decides the order of lots in the queue; it can be

based on the arrival time (FIFO or first-in-first-out rule) of the lots, their predefined

priority (hot lots), or by bottleneck indicators. A bottleneck indicator could be that the

waiting time of lots in a particular queue has exceeded a predefined threshold value.

Equipment related operating rules are the setup and load rules discussed in Chapter

2 and considered to be input parameters. The general algorithm for moving the wafers

at an intermediate step, beginning with the arrival of a new lot, is shown in Figure 4.1.

Operating rules are defined in a hierarchical fashion starting from factory wide

rules, down to workareas, workstations and finally to the equipment level. In the

absence of lower level rules, the immediate higher level rules take precedence and are

applied if appropriate. The wafer movement simulation models are adaptations of

more extensive and complex models described in [1].

4.2 Yield Simulation

The primary aim in yield modeling is to classify each die on a wafer as fault-free or

faulty so that yield can easily be estimated by evaluating the ratio of good die to the

total number of die on a wafer. One can further associate with each die a list of faults,

the corresponding defects, the steps at which the defects were formed, the particles

causing these defects and the equipment responsible for the particles. In this way a

complete trace of the fault to the source can be ascertained. As will become apparent

later, such information can be used to model the efficiency of defect diagnosis.

Ideally, one can perform yield simulation using established Monte Carlo techniques

to mimic the introduction of particles on to the wafer and then simulating the interac-
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tion of the particle with processing steps as in CODEF [2]. The defective circuit should

then be simulated or compared with circuits stored in a database to determine the

presence of a fault. Such a simulation would be, however, excessively time consuming

since millions of particles would need to be simulated. Hence some simplifications,

with perhaps some reduction in accuracy and limitations, are needed to simulate yield

loss efficiently.

Figure 4.1 Algorithm for sequencing wafers at a single step.
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4.2.1 Simplified Method of Yield Estimation

First, let us assume that particle types are uniquely identified by, for example their

chemical and physical characteristics, and associated with their source i.e. the gener-

ating equipment. However, each source may generate more than one type of particle

and several sources can  generate the same type of particle. A source and particle type

pair will be referred to as a  disturbance type.

Each disturbance type is assumed to generate two or three dimensional particles of

a certain size, Rc. If the number of particles on a wafer is given by Nc, then the occur-

rence of particles on a wafer can be described by the joint probability distribution

f(Nc,Rc). Figure 4.2 illustrates the hierarchy of relationships between disturbance

types and particle characteristics. Generally, the distributions of Nc and Rc are

assumed to be independent of each other and modeled as gaussian and polynomial dis-

Figure 4.2 Disturbance type characteristics.
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tributions respectively [3, 4, 5, 6]. Therefore, the particle distribution can be described

by:

(4.1)

where, fN(Nc) is the distribution function of the number of particles per wafer and

fR(Rc) is the particle size distribution function. fN(Nc) is given by the gaussian

distribution:

(4.2)

where, m and σ are the mean and standard deviation and are assumed to be known.

fR(Rc) is given by:

(4.3)

where, K is a constant and p is a known exponent extracted experimentally [6]. Rmin

is the minimum size of particles, greater than zero, that can cause a defect in the IC.

The parameters of the above equations may vary with time making the occurrence of

particles on a wafer a non-stationary stochastic process. One should also assume a

spatial variation in the distribution of particles across a wafer surface, g(xc,yc), where

(xc,yc) is a point on the surface [7]. But such an assumption makes yield modelling

much more complex and, instead, particles are assumed to be distributed uniformly.

The next step in yield modeling is to characterize the occurrence of a fault on a die

as a result of particles introduced on the wafer surface of certain sizes. This can be

achieved in two steps where the transformation of contamination to defect is modeled

first and then the defect to fault transformation. These modeling steps are presented

in the next two sections.

f Nc Rc,( ) fN Nc( ) fR Rc( )=

fN Nc( ) 1
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4.2.2 Mapping Contamination to Defect

There are three types of transformations of contaminants to defects. These are: for-

mation of defects from contamination at a certain process step, removal of contamina-

tion at a cleaning step and formation of defects at a process step from defects formed

in earlier steps. Note that the key to modeling these components is identifying the pro-

cess step and the layer in which the transformation occurs. The three possible scenar-

ios of the fate of a particle are depicted in Figure 4.3.

In the model for transformation of particles to defects one has to consider change in

defect size also. Such a transformation can be formulated as:

(4.4)

where, Rd, xd and yd are the size and location of defects, Rc, xc and yc are those of the

particles, and hc() is the transforming function. In its simplest form, hc() can be

assumed to depend only on the particle size and thus, Rd can be given by the function

CcRc where, Cc is a given constant.

During cleaning steps, surface particles are removed and this can easily be modeled

as the probability of particle removal, Pc(Rc). The probability function can be made

dependent on the particle size since larger particles are observed to be easier to

Figure 4.3 Possible transformations of particle.
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remove than smaller ones. This model is the more general form of the experimental

determination of wet cleaning efficiency as presented by [8, 9] and it is further

assumed that the same model holds for other methods of cleaning as well.

Defect to defect transformation (three dimensional defect propagation) can be mod-

eled in a manner similar to particle to defect transformation. Thus the formula can be

written as:

(4.5)

where, Rdd, xdd and ydd are the new size and location, respectively, and hd() is the

transforming function. Again, this transforming function is assumed to be of the form

CdRd where, Cd is another constant. Note that defects may also get removed by  steps

such as layer polishing. Such an effect can be modeled  similarly to the ones proposed

above.

4.2.3 Mapping Defect to Fault

Defect to fault mapping has been extensively studied in the past as noted in Chapter

2. There are two distinct methods, one uses Monte Carlo techniques [2, 10, 11] and the

other uses models based upon the critical area concept [12, 13]. Monte Carlo tech-

niques are excessively time consuming, whereas models based on critical area esti-

mate only the average yield. Neither method is directly suitable to answer the

question: given the size, location and layer of a defect on a wafer, what is the resulting

fault, if any?

This question can easily be addressed by making certain modifications to the critical

area based yield models. It is first assumed that faults are defined as shorts or opens

in a particular layer, and that their corresponding defects are extra and missing mate-

rial in that layer. Let us now assume that a defect of certain type and size, R, occurring

Rdd hd Rd xd yd, ,( )=
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in a particular die causes a fault of type i. Then the probability, pi
f, of this fault occur-

ring given that a defect of size R has occurred is given by:

(4.6)

where, Ai
c is the critical area for fault i, and the defect type and size (R) under

investigation (see e.g., Figure 2.15), and Achip is the total area of the die. Then if n

types of faults can be caused by this defect, the total probability that a fault has

occurred, Pf, and that no fault has occurred, Qf, are given by:

(4.7)

where, p0
f is a convenient representation for the probability that no fault occurs.

Hence, to simulate the occurrence of a fault (for a given defect size, R) one has to select

a number from 0 to n randomly using the values pi
f.

Next, one has to consider the probability of occurrence of a defect of certain type and

size which is the same as that of a particle, pc (since it is assumed that location of par-

ticles and of corresponding defects are the same). Further, since the particles are

assumed to be distributed uniformly one can express pc as:

(4.8)

where, Nchip is the number of dies on a single wafer. (Note that Equations 4.6 and 4.8

are valid only if the particles are uniformly distributed over the wafer surface.)

Critical area is assumed to be known before simulation. In reality it can be extracted

using a number of available methods which analyze design layouts for this purpose.

Available methods for such computations have been observed to be prohibitively
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expensive for a large layout containing several million transistors. To improve compu-

tational efficiency, a new method was developed to extract critical area using layout

hierarchy. A complete description of the method appears in [14].

4.2.4 Estimating Yield

Based on the models presented above, the method to estimate yield can now be for-

mulated as depicted in Figure 4.4. The first step is applied to each wafer being pro-

cessed in a piece of equipment at a particular step. The equations presented earlier

are applied in sequence as shown in the figure. At the end, each defective die is asso-

ciated with a list of faults and their corresponding defect and particle characteristics.

Finally, when the wafer is completely fabricated yield can easily be estimated by

counting the number of defective die on each wafer. The mean of yield values obtained

from all wafers gives the average yield in the case where particles do not change with

time (static case).

4.3 Test Simulation

The primary objectives in developing a model for the testing process are: estimating

sort yield, estimating time requirement, and characterizing the nature of defective die

used for failure analysis. In this section, only the first two factors will be dealt with.

Characterization of defective die is more relevant to the development of the failure

analysis models.

4.3.1 Sort Yield

Since only contamination related yield loss is considered, the sort yield appears to

be higher than actual yield due to two factors: primarily due to less than 100% fault

coverage, and to a lesser extent due to some of the low yielding wafers being sampled

for failure analysis. Fault coverage is normally defined at the top level for all faults

taken together. At the level of a fault on a die a detection parameter which takes a
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value of 1 or 0 depending on whether or not a fault is detected by testing process. This

can achieved by treating fault coverage as a probability value and assigning detection

parameter for each fault a value of 1 with this probability. One could have also defined

fault coverage values for each subset of faults or at the level of individual faults mod-

eled for testing purposes. The same method can be applied in all such cases.

To estimate the sort yield, one has to now determine whether at least one fault for

each defective die is detectable. In this case, a die can be assigned a tested faulty value

of either 1 or 0. This model of imperfect test quality does not take into account good

dies being tested faulty or false reject outcomes. For this model, the sort yield will

always be higher than or equal to the manufacturing yield.

Figure 4.4 Method to estimate yield.
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4.3.2 Time Required to Test

Operationally, testers are equivalent to normal processing equipment. Their  oper-

ating rules are also similar and thus scheduling of wafers through testers can be sim-

ulated in the same fashion as any other piece of equipment in the fabrication phase.

Rules for lot dispatch, equipment setup and loading are assumed to be known input

parameters [15]. The capacity of each tester is one wafer in a single run and the time

required to completely test a lot, Tlot, is given by:

(4.9)

where, Nlot is the number of wafers in a lot, and Twafer is the time taken to test a wafer

and is given by:

(4.10)

where, Tl
w and Tu

w are the load and unload times of a wafer, respectively, and Tchip is

the time to test a chip. Tchip is given by:

(4.11)

where, Tl
c and Tu

c are the load and unload times of a chip, respectively, and Texec is the

time to execute the tests. Texec depends on whether a tested die contains a detectable

fault as less time is required when a fault is detected early in the test sequence. Texec

is assumed to be either a constant parameter, a single distribution function for all

types of faults, or separate distributions for different fault types.

4.4 Particle Monitoring Simulation

Particle monitors have two primary purposes in a manufacturing line: Collecting

data on the frequency and size of particles and controlling the manufacturing line

using such data. Efficiency and accuracy of data collection depends on the sampling
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methods and particle detectability.  This section presents the requirements for a model

of a  particle monitor to be able to capture yield-related characteristics.

4.4.1 Sampling rules

Sampling rule for a particle monitor can be defined by three factors for each product

being monitored: lot sampling rate, wafer sampling rate and the area of the wafer to

be scanned. Lot sampling rate is defined as the number of lots to be skipped before

sampling one for analysis. Wafer sampling rate defines the number of wafers out of a

lot to be chosen for analysis. It is assumed that any wafer can be selected with equal

probability. Area of the wafer to be sampled is given as the number of adjacent dies to

be scanned for each wafer.

Sampling rules should be such that the capacity of the equipment is not exceeded.

Thus, the number of equipment required to perform particle scanning has to be pre-

computed by looking at the wafer start rates for each product and the average time

required to scan each die. Note that the time required to scan a die is also a function

of the accuracy desired. Hence, prior to any simulation both accuracy and capacity

requirements must be known.

4.4.2 Accuracy of Monitoring

 Accuracy of a particle monitor is characterized as the probability that a particle of

a given size is detected on the IC surface. Small particles are generally hard to detect

than large ones. Probability of detection or particle detectability, pd(R) is assumed to

be given and examples of such a function is shown Figure 4.5.  It is tacitly assumed

that detection efficiency does not depend on any other factor such as orientation, sur-

face properties, etc. The particular characterization chosen for pd(R) is:

(4.12)pd R( ) Kd 1 e
αR–

– 
 

=
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where, Kd is a constant and α is a parameter determining accuracy of the equipment.

Higher the value of α, the more likely it is to detect a smaller particle. Also note that

Tchip must be consistent with the value of α, since a larger α implies a larger Tchip

value.

Each particle on a sampled wafer is associated with a detection value of 0 or 1

depending on whether it is detected by particle monitoring activity or not. This infor-

mation can be used later to model manufacturing line control and can possibly be used

to model fault to defect correlation in observed test or defect diagnosis results.

4.4.3 Controlling Manufacturing Line

The two aspects of manufacturing line control using particle monitor data consid-

ered are rejection of wafers and initiation of corrective actions. Reworking of wafers

as a result of particle monitoring activity is not considered. Wafer rejection can be sim-

ulated by defining a threshold function on the number of particles detected. It is

assumed that the threshold value of number of particles is a given parameter and

whenever the observed number of particles exceeds this value the sampled wafer is

rejected. Note that rejecting wafers has an adverse effect on loading of the line. This

Figure 4.5 Particle detectability.
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can be easily corrected by using a feedback control to replace lost wafers by introduc-

ing an equal number of bare wafers. This is referred to as WIP control.

Initiating corrective actions can be based on another threshold function defined for

the source of particles. To simplify modeling, it is assumed that the particle source is

always diagnosed correctly. A particle number counter is associated with the source to

indicate whether the source has been held responsible for excessive particle introduc-

tion. Application of corrective actions and the corresponding models will be presented

later.

4.4.4 Discussion of Particle Monitor Modeling

A simple model was presented in this section to model particle monitoring activity

which in reality is much more complex [16, 17]. Available data on the functioning of a

particle monitor is limited [18] and the aspect of accuracy and efficiency of particle

monitors should be investigated further. Specifically, the threshold functions defined

above are over-simplified; one must also take into account the size and locations of the

particles observed. The data collected by particle monitors might  not be used imme-

diately to control the manufacturing line. In fact, the data could be used to correlate

the failed die observed on a wafer to its corresponding particle monitor data. Appro-

priate models are required for this which have not been dealt with here.

4.5 Defect Diagnosis Simulation

The primary objective in modeling the defect diagnosis process is to estimate the

time required to identify a subset of equipment responsible for  defective die from the

point it is sampled. The analysis process itself is composed of a predefined sequence of

steps, a specific type of equipment being used at each step. The time required at each

step is determined using a diagnosability model, presented later, which takes into

account the attributes of the product, the defect and the failure analysis equipment.
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The analysis identifies a subset of fabrication equipment and estimates for each piece

of equipment a measure of correctness of diagnosis, using an assignment rule. This

functional model of the failure analysis process is depicted in Figure 4.6. Such a rep-

resentation is well suited to discrete event simulation. A set of rules and models which

are consistent with this functional representation follows.

4.5.1 Sampling Strategy

Sampling strategy of wafers is an input to the failure analysis process. A possible

sampling strategy is to select those wafers that have at least a minimum number of

defective die, Dmin or to select wafers from special bins predefined  by the testing pro-

cess. This last rule has not been included in the test process simulation model but this

should not impose any limitations on the applicability of the failure analysis model.

Whatever the chosen rule, it can lead to overloading of the equipment available for

failure analysis. To avoid this, a sampling rule should be combined with the require-

ment that wafers can be sampled only  when the number of wafers in the input queue

of failure analysis is less than an allowed maximum, Qlimit. Figure 4.7 shows the

sequence of operation for successfully sampling wafers for failure analysis.

4.5.2 Timing of Analysis

A model to estimate the time required at each step of the failure analysis process is

presented in this section. First, consider a diagnosability measure, m, with a value

Figure 4.6 Functional representation of the defect diagnosis process.
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between 0.0 and 1.0 for each fault defined for a product. A value close to 1.0 indicates

that the fault is easily diagnosable and a value of 0.0 indicates the fault to be undiag-

nosable. Such a measure should be dependent on the type of defect causing the failure,

the layer in which the defect occurs, and the size of the defect. Suppose that at each

step, starting with an initial value of mi, a final value of mf is achieved in time tf.  One

possible form of the function is given by:

(4.13)

where, ed represents the efficiency of the diagnosis process and is a parameter which

depends on the analysis equipment. Higher the value of ed, the more efficient is the

diagnostic process. The above function is graphically shown in Figure 4.8. Note that

the parameter ed can itself be a function of the type, layer, and size of the defect in

addition to being dependent on the efficiency of the equipment used. The above model

of the diagnostic process implies that more the time spent on analysis, the higher are

the chances of detecting the cause of the fault.

Figure 4.7 Sampling strategy for defect diagnosis.
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Since, the amount of time spent on analyzing a single die in a piece of equipment is

finite, a limit Tcmax should be assumed for each step. Further, a minimum allowable

value mthresh must be defined for the initial diagnosability measure, mi, for each step.

This parameter is introduced to reflect the fact that the analysis on a chip may be dis-

continued after a certain step because  at that point the cause of the fault is deemed

to be “undiagnosable”.

It  remains now to define a model for estimating the initial diagnosability for the

first step of the analysis. It is assumed that each fault for a product is characterized by:

1. An estimate for the area on the chip where the defect may be present, As. The

maximum value for As is Achip or the total area of the chip.

2. The size of the defect, R.

3. The layer n, in which the defect is manifested, n = 0 for the top layer.

Using these parameters one can estimate the initial diagnosability using the following

equation:

(4.14)

Figure 4.8 Diagnostic efficiency of failure analysis.
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where, a, b, and c, are positive constants which captures the relative importance of

each of the three attributes defined above. A high value of a indicates that defects in

lower, unexposed, layers are more difficult to observe. A high value of b limits the

search area for the cause of the fault. A high value of c indicates that larger defects are

increasingly easier to detect in spite of large area of search for the cause of the fault.

This model provides the ability to capture differences in products which are affected

by the same kind of defects.

To illustrate the nature of the Equations 4.13 and 4.14 let us first assume that n =

0 which means only defects in the top layer are of interest. Figure 4.9 shows the nature

of Equation 4.14 as a function of As and R for certain values of b and c.  One can also

calculate the limiting values of tf needed to reach a value of mf = 0.99; this is shown in

Figure 4.10 as a function of As and R for the case shown in Figure 4.9. The time is in

log scale since its range is large due to sharp changes near the extreme points.

4.5.3 Sequencing of Wafers

Sequencing wafers for defect diagnosis requires that a recipe be defined as a

sequence of steps much like a process recipe in the fabrication phase. However, this

Figure 4.9 Initial diagnosability measure as a function of As and R.
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recipe cannot be a simple linear arrangement of steps since, in general, the choice of

the next step depends upon the outcome of the current step. As a specific example,

assume that most of the defects occur in the polysilicon layer in a single metal process.

There can be two possible outcomes after initial analysis:

1. A defect in polysilicon is observed through the top layer or;

2. Most of the defects are missed.

In such a case, layer stripping will become necessary and the first few steps of simple

optical microscopy may need to be performed again. Hence, one may need to model the

fact that at an intermediate step during defect localization any one of three things are

possible:

1. defects are localized and analysis continues to particle identification,

2. strip layer and continue analysis or,

3. abort analysis altogether.

In this model the actual time spent by a wafer at a single step is a combination of a

number of interacting phenomena. The equipment used for defect diagnosis and more

Figure 4.10 Analysis time tf as a function of As and R.
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importantly the engineers are considered to be limited resources just as in the wafer

fabrication phase. This way the queuing time can also be factored into the model.

4.5.4 Assignment Rules

In order to formulate the assignment rule, the source (equipment) of the particle has

to be associated with each fault in a chip (one of the assumptions of the presented yield

model). In reality however, identification of the source may be uncertain because a

given process step may be carried out on many similar equipment operating in paral-

lel, or because similar defects may be produced by closely related steps before and

after the suspected step. Since the contamination-defect relationship is assumed to be

known, one can pre-evaluate the possible set of equipment for any combination of

observed defect and particle type.

Equipment assignment is achieved by keeping a count, Esuspect, of the number of

times a piece of equipment is held responsible for a defect in an analyzed die. In case

of ambiguity a simple rule that can be used in the simulator is to hold all such sus-

pected equipment equally responsible. Other types of rules that can be modeled are:

1. Perfect diagnosis i.e. the responsible equipment is always correctly identified,

2. Diagnosis aided by particle monitors and

3. Probability of incorrect diagnosis where a wrong piece of equipment is held

responsible.

4.5.5 Issues in Simulating Defect Diagnosis Process

In practice, the efficiency and accuracy of failure analysis of defects in a semiconduc-

tor manufacturing depends on a number of attributes interacting in a complex man-

ner. These can be broadly related to either design, testing, or particle monitoring

attributes. Each parameter in the model proposed above is related to one of these

classes. The ability to extract these parameters is an important issue which has not

been addressed here or even in the available literature. The models presented for
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defect diagnosis are believed to represent reality based on current understanding of

the process [16, 17, 19, 20, 21]. Other aspects which have not been considered are the

contribution of historical learning, and the role of the expertise of failure analysis per-

sonnel on accuracy and efficiency of diagnosis which, in reality is very important.

4.6 Simulation of Corrective Actions

The main objectives in modeling corrective actions are: first, to decide when a piece

of equipment needs to be repaired or cleaned and when the equipment can be taken

off-line (if required). Second, to estimate the new parameters of the particle model.

The discussion here will be based on the particle model where equipment is the source.

However, similar arguments can be extended to the models for other sources of parti-

cles.

4.6.1 Decision to Take Corrective Actions

Although, defect diagnosis or particle monitoring processes may hold a particular

equipment suspect, it may not be necessary to take any action. First, taking equip-

ment off-line too frequently can cause bottlenecks due to temporary decrease in line

capacity. Second, confidence in defect diagnosis must be considered. The second

requirement is achieved by keeping a count, Esuspect, of the number of times a piece of

equipment is held responsible for a defect in the die fabricated as presented earlier.

When this count exceeds a predefined threshold, Ethresh, the particular piece of equip-

ment needs to be cleaned. Setting this threshold high means that the confidence in

diagnosis is low.

The piece of equipment targeted for cleaning can be taken off-line in two ways. The

first rule is to wait for the next scheduled maintenance period if the estimated waiting

time, CLwait, is less than a predefined interval of time. Otherwise, the second rule is

applied where the piece of equipment is taken off-line as soon as it completes any on-
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going processing step. More complex rules may be necessary when more than one piece

of equipment operating in parallel needs to be taken off-line. This is achieved by defin-

ing a limit on the time interval, CLinterval, within which two separate pieces of equip-

ment cannot be taken off-line. Figure 4.11 shows the flow chart for taking equipment

off-line for applying corrections.

4.6.2 Effect of Corrective Actions

It should be assumed that both the particle rate and the relative occurrences of dif-

ferent particle sizes change as a result of cleaning. It is further assumed that the new

Figure 4.11 Taking equipment off-line.
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distribution of particle number, Nc, is also a normal distribution with new mean and

standard deviation given by:

(4.15)

where, km and kσ are given constants between 0.0 and 1.0. A value of zero indicates

that the operation of cleaning removes the source entirely. Similarly, we assume that

the distribution of particle size, Rc, is still a polynomial distribution with new

exponent pnew given by:

(4.16)

where, pdiff is a positive constant. Note that the constant multiplier K (see Equation

4.3) of the new distribution must be adjusted in order for the integral of the

distribution to be 1. This model implies that change in particle number is independent

of change in size distribution. Though this is unlikely in reality, it is a reasonable

assumption in the absence of any experimental data otherwise. The other underlying

assumption in this model  is that cleaning or repairing changes particle characteristics

so as to reduce the rate of occurrence of defective die.

4.7 Cost Simulation

One of the accepted industry standards for estimating cost of manufacturing is the

cost-of-ownership model developed by Sematech [22, 23]. In this model, the focus is on

estimating the effective contribution of equipment and other resources to the wafer

cost. This analytical model requires prior estimates of attributes like uptime, through-

put yield, die yield, cycle times, etc. These parameters can be extracted by direct obser-

vation in a factory with varying degrees of confidence, but they cannot easily be

extrapolated to different speculative scenarios. The cost model described in [24] gives

a direct estimate of wafer cost arising out of equipment usage in a multi-product fab-

mnew mold km⋅=

σnew σold kσ⋅=

pnew pold pdiff+=
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rication line. In the latter model, wafer cost is defined as being composed of two com-

ponents: the first being direct equipment usage, and the second, the fraction of time

during which a piece of equipment is not processing any wafers. The focus is on “fair”

allocation of the cost incurred when equipment is idle in a multi-product facility. Here

a variation of the latter cost estimation model is presented which can then be com-

bined with yield estimates to model die cost.

4.7.1 Wafer Cost Model

Average wafer cost Cw can be expressed as the sum of three components: average

cost due to equipment usage, Cequip, average cost due to wafers waiting between pro-

cessing steps (in input queues, for example), Cwait, and, any fixed cost Cfixed. The aver-

aging is done over a fixed interval of time. Thus, the wafer cost can be expressed as:

(4.17)

Cequip is calculated in a manner similar to as presented in [24] and is given by:

(4.18)

where, Cactive is the average cost contribution for active usage of the equipment and

Cinactive is the average cost contribution from equipment when no wafers are being

processed (equipment may be idling or off-line). Cactive in turn is given by:

(4.19)

where, Tactive is the average amount of time wafers of a particular product are

processed in the piece of equipment under consideration and Kactive is the cost of

utilizing the equipment per unit time. Note that Kactive must include the contribution

of capital cost and the operating cost of the equipment. Cinactive can also be estimated

in a similar way by expressing it as:

(4.20)

Cw Cequip Cwait Cfixed+ +=

Cequip Cactive Cinactive+=

Cactive Tactive Kactive⋅=

Cinactive Tinactive Kinactive⋅=
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where, special attention must be paid to estimating Tinactive in a fair manner. Similar

to that presented in [24] Tinactive can be estimated as a fraction of the total inactive

time in such a way that the corresponding Tactive is also the same fraction of the total

active time of the equipment. Kinactive then must take into account not only the

contribution of fixed cost but also the cost of repairing, etc., if any.

Cwait should be calculated as:

(4.21)

where, Twait is the total time a wafer is waiting in the fabrication line without being

actively processed and Kwait is the sum total of cost per unit time of any variable costs

when the wafers are waiting. An increase in cycle time means that more resources are

necessary for handling larger inventory, delay in product delivery, and as presented in

[25],  yield can also suffer. Thus, Kwait can be seen as a penalty cost for any increase

in cycle time. (Twait can theoretically be minimized and most efforts to reduce cycle

times have been focused on reducing Twait [26, 27, 28].)

Finally, Cfixed is composed of the raw cost of the wafer (cost of bare silicon) and any

other cost that should be associated with every wafer. Cost per minute parameters in

the above model need to be extracted out of cost data like capital cost, depreciation

rates, operational cost, etc. which are usually well characterized data.

4.7.2 Die Cost

Having modeled wafer cost, one can estimate the cost of good ICs by taking into con-

sideration the average yield during a given period of time. If, for a given product, aver-

age yield is denoted by Y, and the number of chips per wafer is Nchip, then the cost of

a good chip can be expressed as:

(4.22)

In the above model for wafer cost and consequently, die cost, it is tacitly assumed

that the cost contribution of the failure analysis equipment and resources can be cal-

Cwait Twait Kwait⋅=

Cchip Cw Y Nchip⋅ ⋅=
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culated in exactly the same manner. However, when only a subset of products are sub-

jected to failure analysis, wafer cost for these products will be unnecessarily inflated.

Such inflated estimates can be avoided if one allocates the entire cost of failure anal-

ysis to all the products. This assumption is reasonable since failure analysis can be

viewed as a common resource to “debug” the entire manufacturing line.

4.7.3 Cost of Manufacturing

If Nw denotes the number of wafers manufactured during a given time period with

an average wafer cost of Cw, the total cost of manufacturing, Ctotal, is given by:

(4.23)

This estimate of the total cost of manufacturing serves as an important reference point

for comparing different scenarios. One can, for example, compare different wafer

release policies or scheduling rules. Of course, an increase in cost of manufacturing

does not necessarily mean the overall productivity of the manufacturing facility is any

worse. For example, an increase in failure analysis capacity will increase the cost of

manufacturing, but at the same time the yield learning rate may improve producing

more good ICs to sell. Examples presented later illustrate both the cases: first, where

cost of manufacturing alone is sufficient to compare scenarios and second, where yield

must be taken into account too.
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Chapter 5
Yield Learning Simulator -Y4

The methodology and the models for yield learning described in the previous chapter

has been implemented in a program -Y4 (an acronym for Yield Forecaster). Y4 can be

used in two ways: as a stand-alone simulator using internal models to mimic a fabri-

cation line or, as a library of routines with externally implemented user models for cus-

tom simulations. In this chapter, the structure of the prototype simulator Y4 is

presented and some of the important features of its modules are described.

5.1 Implementation Structure

Figure 5.1 shows the overall structure of the Y4 framework which simulates cost

and yield learning curves. The heart of Y4 is the event handler which communicates

with six modules: The wafer movement simulator (WSIM), the yield simulator

(YSIM), the failure analysis simulator (FASIM), the in-line particle monitor simulator

(PSIM), the cost simulator (COSIM), and, the probe tester simulator (TSIM). The

operation of the event handler and these six modules can be controlled through the

simulation control unit. In addition, the user can implement different models with the

help of the toolkit of functions to access and modify the common database for all the

modules including the event handling routines. A basic user interface is also available

to read input files for the models, write output of statistics gathered, and, customize

the simulation control strategy.

The events are maintained in a balanced binary tree sorted by increasing value of

time. Since more than one event can occur at the same instance, each node of the tree
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contains a list of events with the same time value and sorted in the order they were

generated. Zero delay events are appended to the end of the current list of events in

the order they are generated and this alleviates the problem of concurrent events [1].

All communications and interdependence between the modules of Y4 are handled by

sending appropriate events of specific types.

The models described in Chapter 4 are the internal models of Y4 and are imple-

mented in its submodules (WSIM, etc.). Although these models are based on reason-

able simplifying assumptions, not every situation and factory environment can be

described by a single set of models. In order to be flexible enough, external models can

be implemented and linked to Y4 to expand the repertoire of available models. How-

ever, the general methodology to predict cost and yield learning curves is intended to

remain the same.

Figure 5.1 Top level structure of the Y4 framework.
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5.2 WSIM

The wafer movement simulator, WSIM, is composed of various factory entities and

models presented in Section 4.1 and is shown in Figure 5.2. The simulator is governed

by a controller which modifies the states of factory entities such as equipment, prod-

ucts, wafers and personnel. Scheduling of wafers is governed by a set of factory oper-

ating rules such as wafer release policy, dispatch, setup, and load rules, etc. Statistics

are collected and passed on to the simulation control for updating the database and

output. Y4 can be used with WSIM alone for cycle time and throughput analysis.

WSIM is similar to ManSim (a commercial simulator [2] to perform semiconductor fac-

tory analyses) in its capability. In fact, a comparison experiment showed them to be in

excellent agreement (within 1% of estimated cycle times for a variety of scenarios).

There are two main time-lines of events that occur in the simulated wafer fabrica-

tion line. The first one is initiated by the process of introduction of wafers in the fab-

rication line according to some release policy. Most of the events in the factory are

initiated in some fashion due to the movement of wafers. The second time line is an

independent sequence of events generated by the process of unscheduled (asynchro-

Figure 5.2 Wafer Movement Simulator - WSIM.
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nous) breakdown of equipment. It is assumed that if such equipment breakdown

occurs during processing, the partly processed wafers have to be rejected and further

processing of new lots takes place only when the piece of equipment is back on line.

5.3 YSIM

The structure of the yield simulator, YSIM, is shown in Figure 5.3. Particle forma-

tion is mimicked using random numbers. The particle number generator produces Nc

particles where Nc is distributed normally (Equation 4.2) for each wafer. Then each

generated particle is assigned a random size between Rmin and Rmax (Equation 4.3)

taken from a polynomial distribution. One can also simulate the lot to lot variation in

number of particles by activating a third random number generator in one of the fol-

lowing ways:

1. generate random means and standard deviations using a gaussian number gen-

erator for use as an input to the particle generator for wafers.

2. generate a random multiplier, mc, taken from a predefined distribution func-

tion. The new number of particles is simply then mcNc.

All the random number generators and statistics estimators are adapted from

algorithms in [3, 4].

Depending on the step of the recipe being performed, the particle to defect mapper

performs the proper translation to defects (Equations 4.4 and 4.5). Similarly, the

defect to fault mapper uses the critical area of the fault (from the layout) to assign a

fault, if any, to each defect (Equations 4.6, 4.7 and 4.8). The interface between the crit-

ical area extractor - CREST [5] - and Y4 is rudimentary and is essentially accom-

plished through input files. CREST can currently extract critical area for shorts in

interconnects for fairly large designs.

YSIM works with the wafer movement simulator to introduce particles on wafers

and estimate the yield of each fabricated wafer obtained from WSIM. Further, the
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parameters of the particle generator can be dynamically controlled by a cleaning/

repairing model such as the one presented earlier (Equations 4.15 and 4.16). One

could also use YSIM purely as a static yield simulator without changing the parame-

ters of the particle generators. This is useful for estimating yield and its distributions

for a stable manufacturing line where particle distribution parameters do not change

with time.

5.4 TSIM

The purpose of the test simulator - TSIM - shown in Figure 5.4 is to be able to predict

the time required for testing and to model less than 100% fault coverage situations.

The input to the simulator is a wafer lot of a product with some dies marked defective,

and the list of faults that have occurred. The sequencer schedules the wafers into

available testing equipment and also steps through individual die to estimate time.

The time estimation is achieved by a model which requires the list of possible faults

Figure 5.3 Yield Simulator - YSIM.
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and the distribution of testing time (Equations 4.9, 4.10 and 4.11). In scheduling test-

ing equipment both personnel and rules are taken into account. The fault list and cov-

erage values for each fault defined for a product is used to determine which of the

defective die tested is found to be faulty. The simulator can be switched off in which

case, a pseudo simulation is done with zero testing time and 100% fault coverage.

5.5 PSIM

The particle scanning module or PSIM mimics the efficiency and accuracy of a par-

ticle scanner; its sub-components are shown in Figure 5.5. The two main components

used are the detectability model which determines whether a particle in a scanned

area is detected (Equation 4.12), and the timing model which estimates the time

required to scan a single wafer. The data structures associated with each scanned chip

is also updated to reflect that certain particles are successfully detected. Subsequent

control of the fabrication line depends upon the wafer rejection and equipment correc-

tion criteria applied. Note that this requires the functioning of PSIM to be intimately

Figure 5.4 Tester Simulator - TSIM.
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tied to WSIM. PSIM can also be switched off, either completely or partially by deacti-

vating the detectability model and simulating particle scanners purely as normal

equipment.

5.6 FASIM

The failure analysis simulator, FASIM, consists of three parts: a sampling model, a

diagnosability measure estimator, and a sequencer of chips through different analysis

equipment. Operational policies control both the sampling model and the chip

sequencer by either discarding or accepting chips for further analysis using the diag-

nosability measure. Initial estimates for the diagnosability measure can be modeled

as a function of the layout design or as plain inputs (Equation 4.14). The updated mea-

sures depend on both the design and the equipment characteristics as postulated ear-

lier (Equation 4.13). The structure of FASIM is shown in Figure 5.6. Note that the

operation of FASIM depends on WSIM, the wafer movement simulator, which pro-

duces wafers with defects. It also depends on YSIM which provides information on

particle sources necessary for correctly assigning the source of analyzed defects to the

Figure 5.5 Particle Monitor Simulator - PSIM.
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set of equipment responsible. Mapping of a defect to contamination and finally to its

source is computed internally and used in assigning the source of observed defects.

One can, however, provide this information externally to simulate incomplete informa-

tion on source of defects.

5.7 COSIM

Figure 5.7 shows the cost simulator COSIM, which works first with the WSIM to

estimate the cost of the wafer, and then with YSIM to estimate the cost of good die.

Relevant statistics such as equipment utilization, down times, idle times, etc. are

extracted from WSIM (and PSIM, TSIM, and FASIM as required) and stored in the

database. Values of cost per unit time are used for all these factors to assign a cost to

each wafer for every product manufactured. The cost amortizer then uses the model

presented earlier (Equations 4.17, 4.18, 4.19, 4.20 and 4.21) to fairly allocate cost con-

Figure 5.6 Failure Analysis Simulator - FASIM.
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tributions to the various factors. The costs of testing and failure analysis can also be

amortized in a predefined manner by using the usage statistics from TSIM, PSIM and

FASIM. Yield results are used to compute die cost per wafer for a given period (week,

month, etc.) of time (Equation 4.22). Cost of manufacturing is obtained by integrating

all input costs (Equation 4.23).
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Chapter 6
Basic Capabilities of Y4

In this chapter, results of a number of simulation experiments replicating known

phenomena in a manufacturing line are presented to illustrate the capabilities of Y4.

In designing the experiments, an attempt has been made to exercise each of the mod-

ules (WSIM, YSIM, TSIM, PSIM, FASIM and COSIM) in such a way as to demonstrate

their features and properties individually.

First, cycle times and throughput analyses of a single and a two product manufac-

turing line are presented. Subsequent simulation results illustrate the general differ-

ence in wafer cost of single and two product factories. Then simulations of the impact

of imperfect testing on escape rate are presented. Particle monitor simulations are

illustrated along with wafer rejection in the case where there is a high yield variance.

A simulation example of yield learning for a single product factory with defect diagno-

sis follows. This is followed by simulation of yield learning using particle monitors

alone.

The process recipes, equipment and cost data used in these examples were taken

from an existing manufacturing line. To design manufacturing lines with different

capacities, the equipment set had to be altered to meet desired capacity requirements.

Operators in the manufacturing line were not simulated, and thus, any variability in

observed cycle times and cost is solely due to the equipment. The duration of simula-

tion in each case is at least one year. The fabrication line is assumed to be empty at

the beginning of each simulation because of limitations of the current implementation.

Statistics are collected after the first 12 weeks of simulation (warm-up period) and
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therefore the conclusions drawn are not biased by initial variations occurring as a

result of this initially empty line assumption.

The following examples use mainly for a 0.5 micron 3 metal CMOS process recipe.

The original recipe from an existing manufacturing line has been modified by merging

steps that logically define a layer into a single step. An example would be a lithogra-

phy step which is actually composed of resist spin, bake and expose steps. The original

equipment step has also been changed in order to reflect the merging of the process

steps. These modifications result in cost and cycle times that are nearly the same as

the original. Modification was necessary to protect the proprietary nature of the orig-

inal data. The modified recipe consists of 145 steps using 183 pieces of equipment for

a 2496 wafer starts per week (WSPW in short) capacity factory (a medium sized fac-

tory).

Some examples also use a 0.5 micron, 2-metal, trench capacitor, DRAM process.

After preprocessing, this recipe consists of 174 steps using 214 pieces of equipment

also with a capacity of 2496 WSPW. The modified process recipes and equipment set

are given in Appendices A and B, respectively.

6.1 Cycle Time and Throughput Analysis

Figure 6.1 shows the average cycle time (in minutes) and mean throughput rate (in

wafers per week) versus the wafer start rate for the CMOS factory. As expected, cycle

time increases as wafer starts per week (WSPW) is increased. The rate of increase is

rapid when input WSPW is greater than the capacity of the line (2496 WSPW).The

fabrication line is unstable since the throughput rate saturates and excess wafers in

the line cause inventory to build up rapidly. Normally a factory should never be oper-

ated in such an unstable region. The opposite case is when the factory is under-utilized

by having a small number of wafer starts per week compared to the line capacity.



6.1 CYCLE TIME AND THROUGHPUT ANALYSIS

CHAPTER 6 : BASIC CAPABILITIES OF Y4 113

Here, the mean cycle time is very close to the theoretical raw processing time (RPT)

since human operators have not been taken into account.

The DRAM factory shows the same trend as the CMOS factory as illustrated in Fig-

ure 6.2. The difference lies in the value of the cycle times and achievable throughput

Figure 6.1  Cycle Time and Throughput of CMOS factory.

Figure 6.2 Cycle Time and Throughput comparison of DRAM vs. CMOS factories.
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rate. The raw processing time is 25607 minutes for DRAM and 18106 minutes for

CMOS. The variance in cycle time is also a function of the input WSPW as shown in

Figure 6.3. Variance increases as the input WSPW is increased and is due to the fact

that queues become larger. The increase in variance in the stable region is due to the

likelihood of having a full load available for batch equipment being higher.

In a multi-product factory, scheduling of wafers for various products are inter-

dependent, hence, the cycle time of each product could be affected by other products.

Amongst many factors, cycle time is affected by the proportion of each product, or

product mix, being manufactured. To illustrate this dependence, a two-product factory

was designed with a capacity of 832 and 1664 WSPW (for a total of 2496 WSPW) for

the CMOS and DRAM products, respectively. This factory has 222 pieces of equipment

and has been derived from the original DRAM factory with minor modifications. The

designed proportion of wafer start rate is 33% of CMOS product, the total being 2496

WSPW. In this experiment the proportion of CMOS product is varied from 10% to 90%

of total wafer starts.

Figure 6.3 Variance in cycle time comparison for DRAM vs. CMOS factories.
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Figure 6.4 shows the cycle time of each product as a function of the percentage of the

CMOS product. The manufacturing line shows two distinct regions of operation: a sta-

ble and an unstable region. The stable region is centered around the design point of

the manufacturing line. In this region, the cycle time of CMOS product increases

slowly as the proportion of it is increased. The cycle time of DRAM product, on the

other hand decreases slowly in this range. This factory is derived from the DRAM line,

hence, the operation of the line is dominated by the DRAM process. Therefore, the

cycle time of CMOS product increases as its proportion is increased. In the unstable

region cycle times of both products increase rapidly since the capacity available is not

enough to fabricate such a large proportion of CMOS product. In general, one can

expect unstable operating conditions on both extremes around the design point

depending on the particular organization and design of the factory. However, this sim-

ulation experiment illustrates the applicability of simulation tools in assessing the

operating flexibility of a multi-product facility.

Figure 6.4 Cycle Time of two product factory (CMOS and DRAM).
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6.2 Analysis of Wafer Cost

In this section, wafer cost estimates are presented for the manufacturing lines illus-

trated in the previous section. Figure 6.5 shows the cost of wafer for the CMOS product

as a function of input wafer start rate. The cost of wafer decreases nearly inversely

with increasing wafer start rate as long as the factory is operated within its designed

capacity. The minimum value attained is $2845. Beyond the line capacity, wafer cost

increases a little corresponding to a small drop in equipment utilization. Long queues

of wafers waiting at the bottleneck equipment cause other equipment to starve. Note

that, in these experiments the value of Kwait in Equation 4.21 is zero and, hence, the

increase in cost is entirely due to decrease in utilization and not due to increase in

waiting time, Twait. Similar results were obtained for the DRAM product except that

the minimum wafer cost obtained is $3532, mainly because the DRAM process

requires expensive equipment to define the trench capacitors and executes more

lithography (mask) steps.

Figure 6.5 Cost of Wafer vs. volume for CMOS and DRAM factories.

300025002000150010005000
2000

4000

6000

8000

10000

12000

14000

CMOS
DRAM

WSPW

C
os

t o
f W

af
er

 (
$)

u
n

st
ab

le
 r

eg
io

n



6.2 ANALYSIS OF WAFER COST

CHAPTER 6 : BASIC CAPABILITIES OF Y4 117

Figure 6.6 shows estimates of cost of wafer as a function of the product mix for the

two-product factory presented earlier. In the stable operating region, the cost of CMOS

product decreases as its proportion is increased due to better utilization of the CMOS

processing capacity (same as in a single product factory). Exactly the opposite is true

for the DRAM product. In the “fair” allocation cost model, cost incurred due to the idle

times of equipment used by only one process is wholly allocated to the corresponding

product. This effect is more pronounced for the DRAM product since it requires spe-

cialized equipment (for trench capacitors and epitaxial layers) not required by the

CMOS process.

In the unstable operating region the cost of wafer for both products increases as the

proportion of CMOS product is increased. The cost of CMOS product increases because

of starvation of non-bottleneck equipment in spite of the fact that more wafers are

being produced. In fact, the throughput of the CMOS product is no longer equal to the

input wafer start rate as one may expect. Instead, it is less than the input start rate

because of capacity limitations. The cost of DRAM product, on the other hand,

Figure 6.6 Cost of Wafer vs. product mix.
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increases dramatically mainly because of under-utilization of the dedicated equip-

ment. Notice that a similar effect is not apparent for the CMOS product at low start

rates since the CMOS process does not have any significant (expensive) equipment

dedicated to it. Almost all the process steps of CMOS are shared by the DRAM process

leading to uniformly high utilization of the shared equipment.

6.3 Static Yield Estimation

The fabrication line described above for the 0.5 micron 3 metal CMOS process is also

used to illustrate yield simulation with Y4. Line capacity is 2496 WSPW and wafer

diameter is taken to be 150 mm. Only defects in the polysilicon and the three metal

layers are considered as dominant yield detractors. Defects in the polysilicon layer are

assumed to be the result of particles introduced during the poly deposition step.

Defects in metal layers are assumed to be due to particles generated at the common

sputtering step. It is also assumed that these defects result in shorts in the respective

layers.

Critical area, as a function of defect sizes, for a product must be extracted from its

layout as noted in Chapter 4. In this case, it is assumed that the critical areas for each

defect type must closely resemble those of a modern microprocessor design. Since a

typical layout was unavailable certain reasonable assumptions were made. Sensitivity

of the polysilicon layer to shorts is assumed to be lower than the three metal layers.

Using this assumption, the critical areas were derived by appropriately scaling the

corresponding critical areas obtained from 24-Port Register File [1] and 32x32 Cross-

bar Switch [2] both designed with a 1.5 micron design rule. The results for the two

designs were obtained using the software CREST and are presented in [3]. The critical

area functions for each of the defect types scaled to a 0.6 micron design rule are given

in Appendix C. For this assumed design, the chip size is 3 cm2 and the number of

usable die per wafer is 50.
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The mean and variance of number of defects (Equation 4.2) for each of the 4 defect

types are set to be 40 and 200 resulting in a mean density of 0.3 defects/cm2. The

experiment was repeated for a number of values for the exponent, p, of the size distri-

bution (Equation 4.3). Figure 6.7 illustrates the plots of yield values for each layer and

the total yield. Increasing values of p result in increasing yield since the likelihood of

larger defects is lower. Also note that the metal yields are nearly equal to each other

and are consistently lower than the polysilicon yield. This is because sensitivity of the

polysilicon layer to shorts is lower than that of metal layers. The metal layer defect

sensitivities are comparable to each other. The experiment was also conducted with

various values of means and variances of defect number distributions

Critical area functions for 0.5 and 0.4 micron design rules are also derived by apply-

ing scaling (shrink) transformations to the critical area assumed for the previous case.

The resulting chip areas are 2.11 cm2 and 1.4 cm2, and the number of usable dies per

wafer are 73 and 110, respectively. The same simulation experiments were repeated

for these two cases of shrink. In Figure 6.8 the total yields for each of the three cases

Figure 6.7 Layer and total yield vs. defect size distribution parameter, p.
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are plotted against size distribution parameter, p. Note that as expected the yield val-

ues for the three cases coincide when p = 3 - an artifact of the yield models discussed

in Chapter 2 and also presented in Chapter 4. At p = 3, increased sensitivity to defects

due to shrinking is compensated by the increased number of dies on a wafer. Also note

that the design with highest shrink (0.4 micron design rule) shows lesser sensitivity

to change in p - again due to increased number of dies per wafer.

The cost curves for the three cases illustrated in Figure 6.8 are shown in Figure 6.9.

Applying shrink to designs means that the number of dies per wafer increases which

lowers the cost of a good die.   However, shrinking designs may lead to parametric yield

loss and even an increase in particle rates. Higher particle rates can be because of

proximity effects where closely spaced IC features are susceptible sites for formation

of defects (due to limitation of lithography resolution). Such effects may affect the opti-

mistic results shown in Figure 6.9. At higher defect density (1.2 defects/cm2) the sen-

sitivity of yield and cost of die to the size distribution parameter, p, increases

Figure 6.8 Yield vs. p comparison for three versions of a design.
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substantially. Note the increase in range of yield variation as shown in Figure 6.10 and

the steepness of the cost of good die trends as p changes. However, these trends still

suggest that shrinking the design reduces cost.

Figure 6.9 Cost vs. p comparison for three versions of design.

Figure 6.10 Yield vs. p for higher defect density (1.2 defects/cm2).
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6.4 Imperfect Test Simulation

In this section, results of simulation for the testing process will be presented from

the point of view of less than 100% fault coverage. To achieve this, Y4 is set up for sim-

ulating defect related yield loss for the 0.4 micron 3-metal CMOS design presented

earlier. In this case, the value of the size distribution parameter, p, is fixed at 3.0. A

spectrum of defect densities for each defect type (extra material defect of polysilicon,

metal1, metal2 and metal3) is considered.

In estimating the time to test a lot it is assumed that all load and unload times in

Equations 4.10 and 4.11 are zero. The time to test a fault-free die is assumed to be 12

seconds. Time to test a defective die is assumed to be half of the nominal testing time

i.e. 6 seconds. To be precise, however, a distribution of time to test a faulty die must be

obtained to correctly simulate the tester properties. Note that, according to the

assumptions made, time to test an entire lot will be about 8.8 hours for 100% yield and

about 6.6 hours for 50% yield.

Figure 6.12 shows the apparent yield after test (sort yield) as a function of density

of defects for a layer. It illustrates the dependence of sort yield on defect density for

Figure 6.11 Cost of die vs. p for higher defect density (1.2 defects/cm2).
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90% and 100% fault coverage values. The sort yield at 100% fault coverage value is the

actual manufacturing yield and is thus lower.  For fault coverage values between 90%

and 100% the corresponding yield values are also between the curves shown. At higher

defect densities and lower fault coverages the difference in sort and real yield is

higher. The difference in yield is also a measure for the escape rate i.e., the fraction of

tested fault-free dies which are defective. This is illustrated in Figure 6.13 and shows

the higher sensitivity of escape rate with increase in defect density and decrease in

fault coverage.

The average cycle time of the tester is also a function of defect levels and fault cov-

erage. This is illustrated in Figure 6.14 showing that cycle time decreases with

increasing defect density values. Note that for a given defect level, tester cycle time

decreases with increasing fault coverage. In summary, tester utilization is higher

when both yield and fault coverage are high.

Figure 6.12 Sort yield vs. layer defect density for various fault coverage values.
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6.5 Simulation of Particle Monitoring

In this section, results of simulating the effect of wafer rejection with the aid of par-

ticle monitors is presented. It is assumed that particle monitors can count particles on

the wafer surface deposited in a previous step. For each lot sampled for analysis, 4

Figure 6.13 Escape rate as a function of defect density and fault coverage.

Figure 6.14 Tester cycle time vs. defect density and fault coverage values.
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wafers are randomly chosen and scanned for 30 minutes each for particles with sizes

larger than a minimum of 0.5 micron. The average number of particles per wafer in a

sampled lot is estimated and when this number exceeds a given threshold, the lot is

rejected. Simultaneously a new lot is added at the input of the fabrication phase to

compensate for the rejected lot.

It is expected that if the threshold for rejection is set correctly then very low yielding

lots can taken out of the in-process inventory which, in turn, would increase the yield.

This can be useful in a scenario where the yield is usually high but occasionally some

low yielding lots are produced, i.e., the yield variance is large. In order to simulate

this, Y4 is set up to randomly vary the lot-to-lot mean and variance of the number of

particles. The resulting yield distribution is shown in Figure 6.15 for the 0.4 micron,

3-metal CMOS product with a mean yield of 0.6964. The die cost without any particle

monitors is $39.57.

 Two parameters of interest in this simulation are the threshold number of particles

per wafer for it to be rejected and the number of available particle monitors. The max-

imum sampling rate for lots is limited by the number of particle monitoring equip-

Figure 6.15 Yield distribution for particle monitor simulation.
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ment. In this case, with one monitor one in 20 lots is sampled; with 5 monitors all the

lots can be sampled for analysis. The expected yield and cost of good die as a function

of the number of monitors and the threshold number of particles is shown in Figure

6.16. As shown, the yield has a tendency to increase for certain threshold values but

die cost also increases and in some cases it is almost the same as the nominal scenario

without any monitors. Further analysis showed that any increase in yield is effectively

counteracted by:

1. an increase in operating costs due to particle monitors,

2. decrease in productivity due to decrease in throughput because of lot rejections

and,

3. cost of partially fabricating those wafers that are rejected.

The simulation experiments were repeated with rejection of specific low yielding

wafers instead of lots and the results were similar.

It is speculated that the imbalance in the factory load caused by wafer or lot rejec-

tion in an intermediate step has adverse effects on the performance of the line. It is

possible that using a better scheduling mechanism for wafers could improve the yield

and cost performance. For example, several lots with less than a full compliment of

wafers can be merged, at an appropriate step, to a smaller number of lots. This can

improve throughput rate and may therefore decrease die cost. However, such complex

rules are not implemented in Y4. It is also likely that increasing variance in yield may

reveal a different outcome and this is left as a possibility for future explorations.

6.6 Yield vs. Time Simulation with Defect Diagnosis

In this section, yield learning curve simulation results are presented for the CMOS

design with a minimum feature size of 0.4 microns. It is assumed that the initial expo-

nent, p, of the particle size distribution is 2.0. The initial mean and variance of the par-

ticle number distribution is set in a such a way (about 3 defect/cm2) that the total
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initial yield is less than 10%. Note that the initial yield also depends on the critical

areas assumed for each of the defect types.

Figure 6.16 Yield and die cost as a function of number of monitors.
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Wafers are sampled for failure analysis when there are more than 30 (Dmin) defec-

tive die on a wafer and when there are less than 3 wafers (Qlimit) waiting to be ana-

lyzed. The failure analysis consists of five steps: observation under microscope,

observation with SEM, stripping layers (if required), cross section analysis, and, spec-

troscopic analysis (WDX, EDX, etc.). These steps are carried out in sequence and the

time required at each step is calculated using Equation 4.13. The limiting value of

final diagnosability, mf, for each step is assumed to be 0.99. The parameter, ed, for each

piece of equipment is chosen such that it reflects the expected time required for each

of these steps. The maximum allowable time, Tcmax, is fixed at 1, 3, 1, 3, and 4 hours

respectively. This means that the maximum time required to analyze 30 defects in the

top metal layer will be about 2 weeks (not considering the queuing time).

To calculate the initial diagnosability value, (Equation 4.14), the layer number, n,

and defect size, R, are extracted from defective die data. One also needs to also con-

sider the extent of search area, As, for the product under consideration. This parame-

ter is assumed to be defined by a normal distribution with a mean of 0.2 cm2 (variance

= 0.008). This assumption is necessary since a fault is defined to be a short in a given

layer. In reality, the types of electrical faults (shorts in our case) tested at probe testers

depends on the fault models used to generate the test vectors. Thus, a single layer

short can mean many electrical faults each having its own range of area to be searched

for the corresponding defect. The values of the parameters given here were arrived at

by performing an array of simulations with reasonably acceptable values for average

time for analyzing a single wafer.

Assignment of the equipment responsible is accomplished by incrementing the vari-

able Esuspect by 1 for the piece of equipment responsible for the defect. For the rest of

the equivalent equipment the increment value is 0.5 (mimicking uncertainty in cor-

rectness of diagnosis). Corrective actions on a piece of equipment is deemed necessary

when this count exceeds 20 (Ethresh). The equipment is taken off-line for cleaning as
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soon as it has finished processing the current lot of wafers. The value of pdiff  (Equation

4.16) is set to be 0.2 for each type of particle, and km and kσ (Equation 4.15) are set to

be 0.95 each.

Figure 6.17 shows an example of the trend plot of total die yield for each lot. The

yield starts increasing only after about 15 weeks of simulations. This is because failure

analysis is not conducted for the first 10 weeks in order to let the simulated fabrication

line settle into an equilibrium. The total period of simulation is 75 weeks and the yield

values shown in the figure are for nearly 7500 lots.

Observe that in Figure 6.17, the variance in yield increases as the yield ramps up

and then decreases again as the mean yield increases. When the probability of a die

failing is 0.50, the variance is also at its highest (same as the variance of a binomial

distribution with p = 0.50). This is also due to the fact that during the yield ramp-up

period, some lots are processed in relatively cleaner equipment than the others. Even-

Figure 6.17 Example yield learning curve.
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tually, as the yield saturates, the particle characteristics of all the equipment in a

workstation become more comparable.

The weekly average of the yield trend plot is shown along with the yield of polysili-

con and the metal 3 layers is shown in Figure 6.18. Observe that the yield of the metal

3 layer starts to increase almost right after the failure analysis is initiated (after 10th

week). Polysilicon layer yield, on the other hand, starts to increase only after another

15 weeks (around 25th week). This illustrates the fact that polysilicon defects are

more difficult to detect than defects which are near the surface of the chip like metal

3 defects. Further, the yield of metal 3 is low providing enough samples to keep the

failure analysis resources busy analyzing metal defects. Polysilicon defects are effec-

tively ignored until the metal 3 yield reaches about 0.65. However the rate of yield

learning for the polysilicon layer is higher than metal 3 since the availability of more

samples with polysilicon defects compensates for decreased diagnosability of these

defects.

Figure 6.18 Yield vs. time trends of each defect type.
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Cost estimations were also performed with the yield learning simulations. A total of

7.62 million good die are produced in the 75 weeks of simulation period at a cost of

$72.52 per die. This die cost estimate includes costs arising out of failure analysis

which accounts for 5.47% of the good die cost. This amounts to about 30 million dollars

worth of failure analysis cost compared to about 522 million dollars for the rest of the

factory over the simulation period. In the next chapter, further applications of Y4 in

cost analysis will be presented.

6.7 Yield vs. Time Curve With Particle Monitoring

This section presents the results of yield learning simulations using particle moni-

tors alone for local and short feedback for particle rate correction. The initial particle

rate and cleaning function parameters are the same as in the previous section. Lots

are sampled after each of the four steps where polysilicon, metal1, metal2 and metal3

defects are introduced. The sampling strategy is the same as in the example of particle

monitors with wafer rejection (Section 6.5). Again, only one out of 20 lots can be sam-

pled using one monitor and all lots can be sampled using five monitors. The threshold

number of particles to initiate a corrective action is set at 30 particles per wafer pass.

It is expected that with increased rate of sampling, the feedback cycles will become

shorter and thus yield learning rate should be higher. Figure 6.19 shows yield learning

curves obtained with simulation as a function of increasing number of particle moni-

tors. As expected the learning curves are increasingly steeper as the   number of par-

ticle monitors is increased. Unlike the previous example of particle monitor

simulation, here both yield and productivity (number of good die produced) are signif-

icantly increased thus increasing cost benefits. The cost and number of good die pro-

duced is illustrated in Figure 6.20. This simulation exaggerates the yield learning

benefits of using particle monitors to some extent but illustrates a possible impact nev-

ertheless.
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6.8 Performance of Y4

Time and memory requirements of Y4 depend on a number of factors pertaining to

the simulation setup. In WSIM the factors which affect performance are the wafer

starts per week (WSPW), the number of process steps, number of pieces of equipment

and the time period of simulation. Cycle time and cost of wafer simulations presented

Figure 6.19 Yield vs. time curve simulation using particle monitors.

Figure 6.20 Cost and number of good die for particle monitor simulation.
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in Sections 6.1 and 6.2 take less than 30 minutes and use approximately 7 Mb of mem-

ory. Performance of yield simulation such as the ones presented in Section 6.3 depends

on the number of particle, defect and fault types that need to be simulated. Higher the

rate of particles, the longer the time required for simulation. The time range is from

about 1 to 8 hours for a single simulation over a period of 50 weeks. The memory

requirement is between 8 and 10 Mb. The 75 week yield learning simulation presented

in Section 6.6 takes about 14 hours using 11 Mb of memory. Simulations with PSIM

and TSIM do not change the time and memory requirement significantly. These time

and memory requirements are for a DEC station 5000 running Ultrix v4.3.

References

[1] W. Maly et. al., “Memory Chip for 24-Port Global Register File”, Proc. of
IEEE Custom Integrated Circuits Conference, San Diego, pp. 15.5.1-15.5.4,
May 1991.

[2] M. Patyra and W. Maly, “Circuit Design for a Large Area High-Performance
Crossbar Switch”, Proc. of IEEE Int. Workshop on Defect and Fault Toler-
ance in VLSI Systems, pp. 32-43, Nov, 1991.

[3] P. K. Nag and W. Maly, “Hierarchical Extraction of Critical Area for Shorts
in Very Large ICs”, Proc. of Int. Workshop on Defect and fault Tolerance in
VLSI Systems (DFT), pp. 19-27, Nov. 1995.



CHAPTER 6 : BASIC CAPABILITIES OF Y4 134

REFERENCES



 CHAPTER 7 : APPLICATIONS OF Y4 135

Chapter 7
Applications of Y4

In Chapter 6, results of simulations using Y4 were presented to illustrate some of

the basic capabilities. The examples used also can be viewed as possible applications

of Y4. In this chapter, a spectrum of simulation results are presented which illustrate

the potential applications of the software Y4. The examples presented here are prima-

rily geared towards illustrating time domain response of a manufacturing line. The

first aspect investigated is time domain changes in input wafer start rate and its

impact on cycle time and cost of wafer. The rest of the four examples in this chapter

are related to studying the impact of various manufacturing and strategic attributes

on yield learning curves. These results are categorized as follows:

1. Effect of capacity of failure analysis facility on the yield learning rate.

2. Reaction of a manufacturing line to sudden increase in particle rates and conse-

quent yield degradation.

3. Using a “diagnosable” product to aid in yield learning for an relatively undiag-

nosable product.

4. Delaying introducing a relatively undiagnosable product in a line partially

“debugged” using a diagnosable product.

7.1 Cost of "Ad Hoc" Wafer Release Policies

In this section, the effect of non-uniform wafer release policies on the operational

performance of a fabrication line will be considered. Under ideal conditions, the wafer

start rate per week should be held constant at a certain value within the capacity of

the fabrication line. In reality, the wafer start rate may need to be increased for a few
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weeks to meet a special demand. Figure 7.1 shows such a surge of wafer starts per

week (WSPW) as a function of time. A wafer surge is characterized by the number of

additional wafers per week (height of the surge) and the duration of the surge. Of

course, for any given number of additional wafers to be produced, there are a number

of choices of surge length and duration.

An important impact of such wafer release policies is the estimate of possible addi-

tional revenue it might generate. Accurate estimation of such revenue requires a com-

plete understanding of the complex interaction between market demands, pricing

policy, and manufacturing efficiency and cost. Leaving this and other aspects aside,

here the focus is on the change in manufacturing cost of wafer as a result of the change

in operating conditions of the fabrication line.

When a fabrication line is operated under its rated capacity, any increase in wafer

start rate leads to a decrease in cost of wafer, as amply illustrated in Figure 6.5. How-

ever, the more typical situation is that the fabrication line is operated near full capac-

ity to achieve the lowest overall cost of wafer. In this situation, the consequences of a

small increase in wafer starts may be dramatic. It has been shown, for instance in [1],

that cycle times increase rapidly, and it takes several weeks for the cycle times to

Figure 7.1 Graphical representation of a wafer surge.
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return to equilibrium values. At the same time, the inventory size or WIP (Work in

Progress) builds up but the throughput rate does not change much.

Figure 7.2 shows weekly averages of cycle times for an wafer surge height of 192

wafers per week. No special priority is given to the excess wafers. The nominal curve

of cycle time where no such surge is applied is also shown in the figure. As presented

in [1], cycle time increases and returns to normal levels after a duration which is much

larger than the input wafer surge duration. Cost estimations were also performed for

both the cases with the assumption that the penalty cost Kwait (as in Equation 4.21)

is $0.01 per minute per wafer. Cost of wafer follows a similar trend and Figure 7.3

shows the difference in weekly wafer cost. Note that even the peak difference in wafer

cost is a small fraction of the average wafer cost for the nominal case which is $2850

(amounting to approximately $0.16 per wafer per minute of actual processing time).

Both the duration of the cost surge and the maximum wafer cost difference depend

on the input WSPW surge duration and height. Figure 7.4 shows the nature of the

Figure 7.2 Weekly averages of cycle time for nominal factory and for a wafer surge.
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dependence of output surge duration for a range of input surge duration. The simula-

tions were performed for three lengths (1, 2 and 3 weeks) of input surge duration. Lin-

ear regression was also performed to clearly illustrate the dependence (square of the

regression coefficient are given with the legends). Notice that the duration is a stron-

ger function of duration of the input surge. This suggests that for a given excess wafer

requirement it is better to release it over a shorter duration of time.

Figure 7.3 Difference in weekly wafer cost for nominal factory and for a wafer surge.

Figure 7.4 Duration of cost surge length vs. input surge height.
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If one focuses on the difference in total cost of manufacturing, Ctotal (Equation 4.23),

instead, then the trend looks different. Figure 7.5 shows the difference in manufactur-

ing cost as a function of the height of the surge. Note that the regression curves shown

in the figure show a quadratic growth and can easily be in the order of millions of dol-

lars. This experiment illustrates the risk of applying a wafer surge to a fabrication line

operating near capacity. One can justify such a risk by arguing that the extra wafers

produced may enable a premium price or meet a key customer's demand. Such argu-

ments can be placed in their proper perspective using simulation tools.

In the previous examples, we had assumed that partial loading of batch equipment

is allowed. If one allows only full loading of the batch equipment, then the difference

in cost of manufacturing is substantially reduced. This is not only due to better batch

equipment utilization but also due to reduced sensitivity to cycle time build up. When

the extra wafers during the surge are given hot lot priority (highest priority) then, as

expected, the difference in manufacturing cost increases dramatically. Capacity of the

fabrication line also plays an important role in this type of analysis. Naturally, a larger

Figure 7.5 Difference in manufacturing cost vs. input surge length.
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7.2 EFFECT OF FAILURE ANALYSIS CAPACITY ON YIELD LEARNING

fabrication line is better able to absorb a small surge in wafer starts and, consequently,

the cost impact is less.

In summary, it has been demonstrated above that both cycle times and increase in

wafer cost are strong functions of input wafer surge height and duration. Cost compar-

isons for the cases presented indicate that pricing policy of the additional wafers must

be carefully evaluated. Scheduling rules play an important role in deciding the cost

impact. Hot lots inherently introduce higher manufacturing cost and should be

avoided unless short cycle times of additional wafers are of paramount importance.

Finally, in smaller fabrication lines such disturbances can have adverse effects.

7.2 Effect of Failure Analysis Capacity on Yield Learning

In Section 6.6, simulation results were presented for a CMOS product and the yield

learning curves obtained for polysilicon and metal3 defects are shown again in Figure

7.6.  In this section, simulation results obtained by doubling the failure analysis capac-

ity will be presented and discussed.

Figure 7.6 Yield learning curves for CMOS product.
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Besides the obvious fact that the yield learning rate should increase, two other

effects are also apparent as shown in Figure 7.7. First, the polysilicon layer yield

starts to increase around the 20th week, which is about 5 weeks sooner than the pre-

vious case. Second, this occurs when the metal 3 yield is 0.73 instead of 0.65 for the

nominal case shown in Figure 7.6. Availability of more resources enables metal defects

to be diagnosed quickly. More importantly, there is enough left over capacity to analyze

polysilicon defects while the metal defects are being analyzed.

Comparison of the two cases becomes more meaningful if the cost and number of

good die produced are compared. In the first case, the estimated cost of good die is

$72.52 and a total of 7.62 million good die are fabricated. In the second case, it is

$51.13 and 11.54 million for the cost and number of good die, respectively. These esti-

mates take into account the increased cost of failure analysis besides the cost of fabri-

cation of wafers. Thus, an extra revenue of $247 million can be generated even when

the ICs are sold at the cost price of the first case.

Figure 7.7 Yield learning with twice the failure analysis capacity.
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7.3 EFFECT OF SUDDEN DEGRADATION IN YIELD ON COST

In this particular case, further increasing the capacity of failure analysis results in

an additional smaller gain in the yield learning rate. This is because of the fact that

the corrective feedback rate becomes too frequent. The corrective actions cannot be

performed as fast because of constraints on scheduling the equipment being taken off-

line and cleaned. This result is biased by the fact that only 4 types of defects were con-

sidered. However it illustrates that Y4 can be used to determine the required failure

analysis capacity for attaining the maximum yield learning rate.

7.3 Effect of Sudden Degradation in Yield on Cost

In the last section, it is implicitly assumed that the particle rates and size distribu-

tions falls only when the corresponding equipment is cleaned. However, it is also pos-

sible that they may increase and degrade the yield. This could be due to some internal

disturbance such as imprecise processing causing more particles to be released. Here,

the effect of such a degradation in one of the sputtering tools is considered causing

metal yield to degrade. Specifically, at the end of the 30th week, the mean of the par-

ticle number distribution for one of the seven sputtering tools is assumed to increase

by a factor of five.

Figure 7.8 shows the result of the simulation illustrating the yield trend plots.

Observe that, compared to the result shown in Figure 7.6, the net yield learning rate

has decreased. The increase in metal defects causes metal yield to drop first. After a

certain delay failure analysis catches up with this increase in defective die with metal

defects and metal yield starts to increase again. But at the same time, polysilicon yield

learning rate drops because failure analysis resources are consumed more in detecting

metal defects.

Figure 7.9 illustrates the yield learning rates for the manufacturing line with double

the failure analysis capacity as before. As expected, the yield learning rate is higher

than in the one shown in Figure 7.7. But there is an important difference in the nature
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of the yield learning curves. In the second case, the yield learning rate of the polysili-

con layer remains essentially unaffected. This result again illustrates how the extra

capacity helps by continuing to perform analysis on polysilicon defects in spite of

Figure 7.8 Yield learning with sudden increase in defect rates.

Figure 7.9 Effect of increased failure analysis capacity in the event of yield degrada-
tion.
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occurrence of an increased number of defective die with metal defects. Observe that

the time the yield problem occurs, the metal yield is high enough so that the number

of defective die being sampled for analysis is already low. Thus, the failure analysis

facility has little trouble in absorbing the small increase in number of defective die

with metal defects.

Again a cost analysis of the two cases helps to put the comparison in proper perspec-

tive. With normal capacity of failure analysis, the cost and number of good die pro-

duced is $94.92 and 5.81 million, respectively. Doubling the capacity of the failure

analysis facility causes cost and number of good die to be $56.90 and 10.49 million,

respectively. This means a net gain of $399 million if all the IC’s could be sold for the

cost price ($94.92) of the first case.

It is useful to compare the two manufacturing lines - one with normal capacity and

the other with double the capacity of failure analysis - from the perspective of sensi-

tivity to yield degradation. Table 7.1 summarizes the results for the two manufactur-

ing lines. The first and second rows of the table shows the number and cost of good die

Normal capacity Double capacity

Undis-
turbed

fab

With
yield

degra-
dation

%
change

Undis-
turbed

fab

With
yield

degra-
dation

%
change

Number of
good die

(in millions)
7.62 5.81 -23.75 11.54 10.49 -9.1

Cost of die
($)

72.52 94.92 +29.92 51.13 56.90 +11.28

% of cost
from fail-

ure analysis
5.47 5.32 -2.74 11.5 12.44 +8.17

Table 7.1 Cost comparison.
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produced. The fraction of the cost of good die attributable to failure analysis is given

in the third row. Notice that obviously the manufacturing line with more failure anal-

ysis capacity is much less sensitive to the yield problem than the normal case. Thus,

any loss incurred due the yield problem illustrated earlier is much less in the second

manufacturing line. To reiterate, the manufacturing line with more failure analysis

capacity is less sensitive and more productive, as borne out by these simulation.

When yield degradation occurs for polysilicon defects, the situation is as illustrated

by the layer yield curves in Figure 7.10. In this case, metal3 yield learning remains

unaffected by the disturbance and polysilicon yield also recovers quickly. This is

because, the metal yield is high enough that there is extra capacity available to ana-

lyze polysilicon defects. Although not shown, the cost impact is also less severe.

7.4 Yield Learning Dependence on Product Design

In this section, the two product factory designed for CMOS and DRAM processes

presented in Section 6.1 will be considered to illustrate yield learning rate dependence

on product attributes. This factory is designed to operate for 832 and 1664 WSPW for

Figure 7.10 Layer yield trends for polysilicon yield degradation.
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the CMOS and DRAM products, respectively. The same defect types i.e., polysilicon

and metal shorts, are considered as in previous cases. The die size is also assumed to

be the same as for the CMOS product, i.e. 1.4 cm2. However, several important differ-

ences in attributes of the CMOS and DRAM products are assumed. These are:

1. Defects in DRAM are more diagnosable than in the CMOS product. This is mod-

eled by assuming a smaller mean search area, As, for DRAM 0.08 cm2, than

CMOS, As being 0.5 cm2 (variances are 0.0002 and 0.008).

2. DRAM is more sensitive to polysilicon shorts and is comparable to the sensitiv-

ity of CMOS to metal1 shorts. Sensitivity to metal shorts in both products is

assumed to be similar.

3. There are two metal levels in the DRAM compared to three in the CMOS prod-

uct. The critical areas assumed for each defect type are given in Appendix C.

All other assumptions for cleaning model and defect diagnosis equipment parameters

are the same as in the previous examples of yield learning.

Figure 7.11 shows the yield learning curves for the CMOS and the DRAM products

when the CMOS product alone is sampled for performing defect diagnosis. The final

yield attained in 75 weeks of simulation is 0.48 for CMOS and 0.41 for DRAM. Note

that the yield of the DRAM product is less than the CMOS entirely because of signifi-

cantly lower polysilicon yield for DRAM. Although the CMOS product has one more

metal layer, the higher density assumed for the polysilicon defects more than compen-

sates for it.

Instead, if only the DRAM product is sampled for defect diagnosis then the maxi-

mum yields attained are 0.68 and 0.60 for the CMOS and DRAM products, respec-

tively. For comparison, the yield learning curves for DRAM product for the two defect

diagnosis cases discussed is shown in Figure 7.12. This difference in learning rates

amounts to a significant gain in terms of productivity and cost of good die, and is

shown in Table 7.2. This analysis not only illustrates the importance of developing
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proper models to differentiate diagnosability of products, but also that such analysis

can be applied to quantify differences in cost benefits.

The advantage of using a product with high diagnosability was illustrated by setting

the area of search for defects to be very low i.e. mean = 0.08 cm2 and variance = 0.0002

Figure 7.11 Yield learning curves when CMOS product is sampled for analysis.

Figure 7.12 Comparison of yield learning curves of DRAM.
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for As. One can also explore a spectrum of diagnosability conditions by varying As. The

results obtained through such experiments are shown in Table 7.3 to further illustrate

the dependence of productivity and cost on efficiency of failure analysis. The table indi-

cates that the case with mean As = 0.16 cm2 results in higher productivity and lower

cost than that for mean As = 0.08 cm2. Further investigation revealed that the yield

learning rate for the polysilicon defects is faster for the case when mean As = 0.16 cm2

as shown in Figure 7.13 for the DRAM product. This is because, the variance in As

results in a higher probability of occurrence of chips with too low a diagnosability

value. This results in preference being given to some of the diagnosable polysilicon

defects. In the case where mean As = 0.08 cm2, the higher rate of occurrence of diag-

nosable metal defects results in much less capacity available for diagnosing polysilicon

defects. This result, of course, is an artifact of the chosen model and it illustrates the

need to verify such relationships in practice.

Increasing failure analysis capacity shows exactly the same trend with a higher

level of productivity and a lower level of good die cost. As presented in Section 7.2, the

change is not proportional to the increase in failure analysis capacity. These experi-

CMOS Assisted
Analysis

DRAM Assisted
Analysis

CMOS DRAM CMOS DRAM

Number of
good die
(millions)

1.518 2.804 2.107 3.605

Cost of
good die ($)

125 161 95 126

% of cost
from fail-

ure analysis
5.5 4.27 6.08 4.57

Table 7.2 Productivity and cost comparison,
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ments also illustrate that for a given capacity, the dominating factor in determining

yield learning rate is the proportion of diagnosable to undiagnosable defects of each

type.

mean As = 0.08
var As = 0.0002

mean As = 0.16
var As = 0.0008

mean As = 0.32
var As = 0.0032

mean As = 0.4
var As = 0.005

CMOS DRAM CMOS DRAM CMOS DRAM CMOS DRAM

Number of
good die
(millions)

2.017 3.605 2.086 4.400 1.758 3.900 1.364 3.007

Cost of
good die ($)

95 126 91 103 108 117 139 151

% of cost
from fail-

ure analysis
6.08 4.57 5.54 4.89 5.87 5.41 5.23 4.80

Table 7.3 Productivity and cost comparison for different diagnosability conditions.

Figure 7.13 Polysilicon yield comparison for As = 0.08 and As = 0.16 cm for DRAM2.
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7.5 EFFECT OF DELAYED PRODUCT INTRODUCTION ON PRODUCTIVITY

7.5  Effect of Delayed Product Introduction on Productivity

In a two product factory, such as the one illustrated in the previous section, one has

the option to enhance productivity by properly delaying the introduction of the second

product in a fabrication line. One can also view this as introducing a second product

in a single product line at an “optimal”  time. In this way one can take advantage of

the fact that during the initial low yield period, a larger sample of diagnosable dies are

available. To illustrate this, the experiment has been set up in the following way.

First, failure analysis related product attributes are kept exactly the same as in the

previous section for the case where the mean and variance of As for DRAM are 0.16

cm2 and 0.0008. The difference is that the wafer start rate now depends on time and

is illustrated in Figure 7.14. Initially, the DRAM WSPW is set near capacity of the line.

After a time interval, Ti, the CMOS product is introduced at 832 WSPW, and DRAM

WSPW is ramped down to 1664 WSPW. these values being the design point of the fab-

rication line. A set of experiments were conducted with three values of Ti from 30 to

40 weeks in steps of 5 weeks each. Note that in the previous section all the results pre-

sented were for Ti = 0.

Figure 7.14 Wafer start rate setup.
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First the case where Ti = 30 is compared with the DRAM product yield trends where

Ti = 0 as presented in previous section. The two yield learning curves are presented in

Figure 7.15, and it is observed that the DRAM product shows a small increase (~4%)

in yield learning rate for Ti = 30.  As an illustration, the CMOS yield learning curve is

shown along with the DRAMs in Figure 7.15. The impact on the productivity and cost

of good die for both CMOS and DRAM products is significant. A summary of the

results for the number and cost of good die is presented in Table 7.4. For Ti = 30, the

number of good die produced is slightly smaller for CMOS but the savings in cost is

significant. DRAM product on the other hand shows a small increase in both produc-

tivity and cost of good die. This experiment shows that there is a possibility to optimize

the overall cost performance of a fabrication line by quantifying the trade-offs in such

strategic decisions.

Figure 7.15 Comparison of the yield learning curves for DRAM.
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7.6 SUMMARY

7.6 Summary

It has been shown that Y4 is capable of simulating scenarios which are relevant to

cost-revenue trade-off studies. Specifically, a sudden increase in wafer start rates can

lead to instabilities in the factory and the cost impact of such a disturbance should be

studied in its proper perspective. Secondly, increasing capacity of failure analysis for

the simulated factory can increase the productivity. Further, a higher capacity failure

Figure 7.16 Illustration of yield trends for delayed product introduction.

Ti = 0 week Ti = 30 weeks Ti = 35 weeks Ti = 40 weeks

CMOS DRAM CMOS DRAM CMOS DRAM CMOS DRAM

Number of
good die
(millions)

2.086 4.400 1.942 4.722 1.818 4.869 1.658 5.059

Cost of
good die ($)

91 103 60 114 57 113 55 112

% of cost
from fail-

ure analysis
5.54 4.89 8.33 4.3 8.56 4.34 8.92 4.35

Table 7.4 Productivity and cost comparison for different Ti values.
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analysis facility is more quickly able to absorb the shock of a sudden degradation in

yield. In a multi-product factory, there may exist various possibilities to improve yield

learning rate. First, cost benefit can be significant enough to justify allocating

resources to increase the diagnosability of a product. Second, one can affect the yield

learning rate and cost performance by strategically delaying the manufacturing of

undiagnosable products.

Judging cost impact purely from previous experience may be difficult if not impos-

sible since a number of interacting factors affect the cost evaluation of a given manu-

facturing line. For the sake of simplicity, many factors such as operator interaction,

applicability of particle scanners in yield learning, etc., have been ignored. It must be

noted that any two factories are unlikely to be the same and that the results presented

here are specific to the factories considered and the assumptions made. However,

there is reason to believe that the trends observed in our simulations should be repli-

cable in other situations.
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Chapter 8
Future Work

The research presented in this thesis was mainly aimed at understanding the

nature of the yield learning process. A great portion of the effort went into capturing

the primary factors leading to yield learning in a manufacturing line. An important

outcome of this research is the realization that predicting yield learning curves is com-

plex task. It is so complex that research in yield learning should be continued. This

chapter attempts to indicate some of the directions which should expand the domain

of the presented work.

8.1 Model Development

First, let us analyze the shortcomings of the models used to mimic the fabrication

phase. The primary factor which has not been addressed in development of WSIM are

the operators in the line. In industry, variability in the line introduced by operators is

an important concern. One can mimic the scheduling of operators in Y4 but the imple-

mentation is rudimentary.

Secondly, operating rules studied in this research were limited to only a subset of

the possibilities. For example, rules for merging and re-assigning wafers to new sets

of lots has not been considered. In reality, scheduling of wafers is also guided by

expected due dates and by estimating equipment loading before and after the piece of

equipment where rules are applied [1]. Such dynamic estimates of performance of fab-

rication lines and adjusting scheduling policies have not been considered.
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8.1 MODEL DEVELOPMENT

A manufacturing line undergoes a lot of changes during its lifetime. Equipment are

removed or added as old products are phased out or new products added. Similarly,

process recipes also undergo changes or evolve as the manufacturing line properties

change. New pieces of equipment may have different contamination properties which

alter the rate of yield learning. For example, a new source of contamination may be

introduced in the line just by incorporating a new piece of equipment in a line. The evo-

lutionary nature of a manufacturing line has not been dealt with in development of Y4.

The yield models used in this work are adapted from existing models presented and

used by various researchers. As noted earlier, a given defect type can be caused by

many different types of particles whose size distributions are not known or available.

For the purpose of this work they were was assumed to have the same form as the

defect size distributions. But the cumulative effects of randomly distributed particle

sizes is unlikely to retain the same distribution for defects. This aspect needs to be

studied and quantified further to achieve an understanding between relationships

between particle size and defect size distributions.

Spatial distributions of particles and defects on the wafer surface cannot be

addressed using the present models. Though simple die-to-die variatons can be incor-

porated easily, intra die variations cannot be taken into account. Appropriate models

must be developed to reflect the spatial variation of defects.

Variability in contamination related yield cannot be modeled well in Y4. For exam-

ple, etching variations can lead to variability in critical areas from wafer to wafer [2].

As the yield is sensitive to such variations, yield learning rates could be affected by

these process excursions. Hence, it is important that models be implemented to mimic

yield variability and simulation experiments be conducted to quantify its relationship

with yield learning rates.

The models to mimic the effect of equipment cleaning are rather simple. Further,

there is no representative data available. Thus, research in this area must be directed
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towards better modeling of equipment and collecting data from the industry. As clear

from the presented work, the models for mimicking the effect of cleaning/repairing

must be consistent with models for particle rates and size distributions. Thus, any

changes in models for particles in the line must also be reflected in equipment cleaning

models.

Efficiency and accuracy of defect diagnosis are modeled in this work using the con-

cept of a diagnosability measure. The model development was mainly guided by the

fact that one must take into account the product, defect and analysis equipment char-

acteristics. The actual functional form presented only reflects this objective. In order

to reflect reality, research must be directed towards quantifying the relationship

between product and diagnosis attributes using controlled experiments. This can be a

complex task since failure analysis is essentially an “ad hoc” process which heavily

relies on human expertise and the history of the fabrication line. Thus, experiments

must be designed to decouple product, defect, equipment and human attributes and to

quantify their individual effects on accuracy and efficiency of defect diagnosis process.

The particle monitor model of Y4 is not able to mimic several of the possibilities.

First, models are needed for less than 100% accuracy of particle monitors in determin-

ing both size and location of defects. Second, a model must be built to predict the prob-

able faults that result from detected particles. Simulation experiments must then be

conducted to determine the correlation between predicted and detected faults. This

will provide some quantification of the usefulness of employing particle monitors for

local feedback control of the fabrication line.

Defect diagnosis can be far more accurate if a correlation exists between predicted

and detected faults. One can use wafers that have been scanned for defect diagnosis

purposes and quantify the relationship with accuracy and speed of diagnosis. The

trade-off analysis capability of Y4 could be vastly improved by taking into consider-



CHAPTER 8 : FUTURE WORK 158

8.2 STATISTICAL TOOLS FOR TUNING MODEL PARAMETERS

ation that several mechanisms may be concurrently available to speed up the defect

diagnosis process.

One important drawback of cost modeling in Y4 is that it does not consider any of

the non-volume dependent costs such as the cost of IC design and the cost of test gen-

eration. To obtain a correct perspective of cost impact one must consider these in cost

calculations since they can have a significant contribution.

Lastly, one needs to identify simpler macro models which mimic the combined

effects of more detailed micro models. The models of Y4 are not currently organized in

any fashion. Models can be developed and implemented hierarchically in such a way

that one can perform accurate detailed simulation or a coarse simulation or a mixture

of both as deemed necessary.

Verification must be carried out not only at the individual model level but also from

the perspective of an entire manufacturing line. Y4 can be used as a base simulator to

mimic the properties of a manufacturing line and compare with real industrial data.

This serves two purposes: first, to verify that the models consider the relevant factors

appropriately and second, to identify the model parameters which have significant

impact on observed criteria such as cost.

8.2 Statistical Tools for Tuning Model Parameters

Modern manufacturing lines have integrated data collection capability directly con-

nected to a central network. An ideal situation when Y4 is directly coupled to a man-

ufacturing line data acquisition system. The data so gathered could be used to extract

model parameters for Y4. Similar data could then be collected from Y4 and the corre-

sponding parameters extracted and compared. Such a setup can be used in conjucn-

tion with statistical tools to measure and possibly correct any error between a

manufacturing line and Y4. In such a setup, one can think of using Y4 for short term
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forecasts with higher confidence and use the forecast measures to apply “corrective

actions” on the manufacturing line.

Tuning of the six submodules in Y4 must be undertaken in a sequence of steps.

WSIM should be tuned first and can be done independently of other modules followed

by COSIM. YSIM should be tuned next followed by TSIM. Tuning of YSIM and TSIM

may need to performed together and iteratively depending on the available data.

PSIM should be tuned next and again it may require retuning the YSIM module.

Lastly, FASIM should be tuned in a manner similar to WSIM.

WSIM needs to be tuned to resemble the properties of a given fabrication line by

matching the mean and variance of the cycle times obtained through simulations to

those measured in a fabrication line. Tuning the cycle time essentially means that the

distribution of time to equipment breakdown and repair must first be correctly

extracted. Secondly, operator timing distribution must be extracted from measured

data in a fabrication line.

Tuning YSIM requires that all the possible sources of particle types be known first.

The parameters of particle number and size distributions can be tuned by matching

the observed means and variances of the different fault types. In the extreme case only

the total yield data may be available without any classification; in this case individual

parameters can only be approximated. It is important that the data used for tuning be

obtained from a stable fabrication line as much as possible. The changes in particle

parameters must be isolated in such a way that the model parameters for corrective

actions can be determined.

Tuning TSIM can be easier if the real fault coverage and corresponding cycle time

data is available. This should be obtained directly from the manufacturing line for a

particular product. Since the cycle time is dependent on the defect levels to a certain

extent, tuning of TSIM may require simultaneous retuning of YSIM.
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PSIM can be tuned only after the parameters of models in WSIM and YSIM have

been tuned to a first approximation. The parameters of the model for accuracy and effi-

ciency of particle monitors can be extracted directly from measured data in a fabrica-

tion line. But more importantly, the measured data can also be used to fine tune the

model parameters of a subset of the particle sources. The subset of particle sources

that can be tuned depends on the particular steps at which the monitors are employed.

Tuning FASIM requires that experiments be conducted to track the time required to

analyze a defective die in different equipment. A first approximation of the model

parameters can be obtained in this way. It is important that each measured data on

timing for a defective die be associated with the layer of the defect and the approxi-

mate area of search for each die. The model parameters should be fine tuned in such

a way that the predicted cycle time for analyzing a wafer match the measured data.

In summary, based on past experience in tuning Y4, it has often been necessary to

observe statistics on various factors such as cycle time, yield, diagnosis rate, corrective

feedback rate, etc., simultaneously. This is useful to correctly determine reasonable

first approximations for model parameters.

8.3 Y4 Enhancements

Currently, the user interface of Y4 is rudimentary, achieved through a number of

files. A window based interface must be implemented to facilitate the editing of input

data and, analysis and visualization of performance measures. A graphical editor for

designing a manufacturing floor, process sequencing and equipment assignment will

be useful additions to Y4. Layout parameters like critical area are input parameters

to Y4. One can enhance the interface by having Y4 acquire these parameters by send-

ing appropriate events to a layout parameter extraction tool like MAPEX [3] or appro-

priately designed version of CREST.
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One must be able to stop the simulation at an intermediate state and save the state

variables. Such a feature will enable Y4 to restart a simulation from an equilibrium

condition without going through the warm-up period. One can also randomize the ini-

tial conditions of simulations and avoid possible systematic dependency in simulation.

An even more important outcome of such a feature is that one can stop and restart a

simulation with altered conditions. Such alterations could be the addition of a product

or a piece of equipment with new contamination levels, etc. A visual interface could

greatly facilitate this since one can stop the simulation at a certain point depending

on the dynamically updated feedback of measures such as cost, yield, etc.

Lastly, effort should also be directed towards improving the speed and reducing the

memory requirements of Y4. Simulation time requirement can grow rapidly if one con-

siders hundreds of products, large capacity, many different particle sources, etc.

Resource requirements of Y4 have not been characterized well and need to be evalu-

ated in future development.
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Chapter 9
Conclusions

With the cost of building a new manufacturing line nearly doubling every genera-

tion, it has become necessary to carefully analyze cost-revenue trade-offs before any

decisions are taken. One of the significant contributors to cost in a modern manufac-

turing line is yield loss due to contamination and the time required to ramp-up the

yield to profitable levels. Thus, it is important to not only understand the reasons for

yield loss, but also to quantify the various attributes of fabrication, product and failure

analysis that determine the yield learning rate.

In the past, evaluation of manufacturing performance was mainly focussed on char-

acterizing attributes like product performance, diagnosability, testability, etc., inde-

pendently of each other. But looking at the manufacturing process as a system

consisting of a number of interacting components makes one realize that yield learn-

ing is tied to this complex inter-dependence. Hence, the first contribution of this

research is the documentation and discussion of this inter-dependence, and the under-

standing gained of the cross-disciplinary nature of yield learning. The deficiencies of

earlier simplistic models of yield learning are discussed in the context of both the tim-

ing of yield improvement cycles, and the change in yield as a result of corrective

actions.

A methodology to predict contamination related yield learning curves for a multi-

product manufacturing line has been developed. This methodology is based upon the

observation that the yield learning process can be viewed as the super-imposition of a
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number of yield improvement cycles for each particle and defect type considered. In

this thesis models have been developed for:

1. Yield loss as a function of particle, defect, fault and layout attributes.

2. Product and defect attributes which decide diagnosability.

3. Failure analysis attributes which decide timing of the diagnosis process.

4. Effect of corrective actions on the change in yield loss.

5. Cost contribution of fabrication, testing and failure analysis.

These models have been implemented in a discrete event-based prototype simulator -

Y4.

 In order to test the functionality of Y4 and its models, a number of simulation exper-

iments were conducted. The basic experiment consisted of testing the operational

aspects of a fabrication line demonstrated through cycle times and cost estimations for

a single and a two-product factory. Yield simulation capability was demonstrated for

a spectrum of defect characteristics showing that known dependencies can be repli-

cated. Imperfect test quality simulation was illustrated through simple experiments

considering a range of fault coverage values. Defect diagnosis simulation has been

illustrated by computing yield learning curves for several defect types. It was shown

that the model has the capability to distinguish product attributes like uncertainty in

fault-location and defect attributes like size and layer of IC. Particle monitoring sim-

ulation capability has been demonstrated through estimating the impact of yield due

to wafer rejection and corrective actions.

Several possible areas where Y4 can be used for evaluating cost-revenue trade-off

experiments have been identified and illustrated. It was shown that introducing wafer

surges, even for a short duration, can have a strong impact on the stability and cost

performance of the line. It was also concluded that, depending on the scheduling rules

employed, assigned lot priorities and the designed capacity of the fabrication line can

have an impact on the cost.
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The possibility of a strong impact of increasing failure-analysis capacity on the yield

learning rate has been demonstrated: to the extent that the cost of failure analysis is

more than compensated by the improvement in productivity. It was demonstrated that

a higher failure analysis capacity better absorbs yield disturbances as a result of a

sudden increase in particle rates. This is an important consideration since new

sources of particles are often introduced in the line and are not easily identified. Extra

capacity of failure analysis may increase short-term cost, but in the long run, it can

reduce manufacturing cost.

Y4 has been applied to evaluate yield learning curves for a two product manufactur-

ing line employing a DRAM and a CMOS process respectively. It was shown that prod-

ucts can be distinguished based on their diagnosability attributes. Later it was shown

that a highly diagnosable product like DRAM can be effectively used for increasing the

yield learning rate. The importance of understanding and modeling of products and

failure analysis equipment from a diagnosability point of view was demonstrated.

Considerable cost gains were shown to be achieved by improving product diagnosabil-

ity.

A lot of the strategic activities in industry involves introducing new products in time

for the market and also removing or ramping down outdated products. For the former

scenario it was shown that it is possible to “optimize” the time of introduction of a new

product for maximization of productivity. Simulation experiments were presented to

show that a highly diagnosable product can be used to ramp up the yield faster before

introducing a second undiagnosable product. In reality, one needs to plan ahead for the

allocation of necessary resources like equipment, personnel, etc., in time to be ready

for the next product. Although this aspect is not illustrated but it is clear that such a

capability can be very helpful in planning the allocation of resources.
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In retrospect, this work clearly demonstrates the importance of modeling manufac-

turing line attributes and their interdependence, in spite of a number of limitations of

its models and assumptions.
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Appendix A

Process Recipes

In this appendix, the steps for the CMOS and DRAM process recipes used in the

simulation examples are presented. The steps are defined and numbered sequentially

and there are four fields describing each step:

1. Description of step: This field gives a brief description of the nature of the pro-

cess step.

2. Feature: This field describes the feature of IC that is affected during the process

steps. This serves as a rough classification of the steps.

3. Time: This field specifies the time required, in minutes, to process one lot (24

wafers). For batch equipment this is equal to the actual processing time for one

load.

4. Workstation: This field specifies the work-station to be used for performing the

necessary step.

A.1 CMOS Process Recipe

The 0.5 micron, 3-metal CMOS process recipe consists of 145 steps and is given in

Table A.1.

Step
#

Description of step Feature Time (min-
utes)

Workstation

1 begin_process begin 20.0 Begin

2 mark_lines scribe 23.0 Scriber1

3 init_clean scribe 52.0 TClean1

Table A.1 0.5 micron 3-metal CMOS Recipe Steps.
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4 init_oxide pwell 524.0 Boven1

5 litho_pwell pwell 200.0 Litho1

6 etch-ox-nitr pwell 100.0 Strip2

7 pwell_implant pwell 22.0 Implant2

8 ox-etch-strip pwell 100.0 Strip2

9 clean_surf pwell 71.0 TClean1

10 well_oxide+drive pwell 398.0 Boven2

11 ox_nit-etch pwell 153.0 Strip2

12 clean_surf2 pwell 51.0 TClean1

13 sec-implant pwell 22.0 Implant2

14 clean_surf3 pwell 72.0 TClean1

15 sec-drive-in pwell 403.0 Boven6

16 ox-etch1 pwell 37.0 Strip3

17 clean-surf3 pwell 51.0 TClean1

18 nitrid-ox-dep pwell 282.0 Boven1

19 poly-sil-dep pwell 202.0 Boven7

20 nitrid-ox-dep2 pwell 241.0 Boven1

21 isol-litho field-ox 212.0 Litho1

22 isol-etch field-ox 268.0 Strip5

23 isol-back-etch field-ox 112.0 Strip2

24 clean-surf4 field-ox 51.0 TClean1

25 isol-ox-dep field-ox 430.0 Boven5

26 isol-nit-etch field-ox 94.0 Strip7

27 clean-surf5 field-ox 51.0 TClean1

28 aox-drive field-ox 464.0 Boven6

29 aox-etch field-ox 47.0 Strip2

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.1 0.5 micron 3-metal CMOS Recipe Steps.
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30 clean-surf field-ox 51.0 TClean1

31 streu-ox field-ox 190.0 Boven2

32 part-meas field-ox 20.0 Surf1

33 init-implant vt-adjust 21.5 Implant2

34 ox-surf-etch gate 36.0 Strip7

35 clean-surf7 gate 54.0 TClean1

36 thin-ox gate 182.0 Boven2

37 poly-dep poly 246.0 Boven7

38 poly-reflow poly 199.0 Boven9

39 etch-poly-ox poly 35.0 Strip9

40 poly-back-etch poly 49.0 Strip6

41 clean-surf8 poly 51.0 TClean1

42 teos-dep poly 210.0 Boven10

43 sputter-a-sil poly 105.0 Dep1

44 meas-part2 poly 20.0 Surf1

45 poly-litho poly 211.0 Litho2

46 poly-a-sil-etch poly 91.0 Strip11

47 poly-res-etch poly 112.0 Strip4

48 poly-etch poly 114.0 Strip1

49 poly2-res-etch poly 191.0 Strip10

50 poly-clean-surf poly 51.0 TClean1

51 poly-teos-dep poly 214.0 Boven10

52 poly-meas-part poly 20.0 Surf1

53 polyox-etch poly 206.0 Strip5

54 clean-surf9 poly 51.0 TClean1

55 post-ox-ldd poly 160.0 Boven11

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.1 0.5 micron 3-metal CMOS Recipe Steps.
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56 ntran-litho source-drain 200.0 Litho2

57 ntran-impl-ldd source-drain 50.0 Implant2

58 ntran-res-etch source-drain 100.0 Strip8

59 ntran-litho2 source-drain 200.0 Litho2

60 ntran-impl-ldd2 source-drain 39.0 Implant1

61 ntran-res-etch2 source-drain 129.0 Strip8

62 clean-surf10 source-drain 51.0 TClean1

63 ox+Teos-dep source-drain 295.0 Boven10

64 tran-etch-ox source-drain 194.0 Strip5

65 clean-surf11 source-drain 51.0 TClean1

66 tran-post-ox source-drain 200.0 Boven11

67 ntran-litho3 source-drain 200.0 Litho2

68 ntran-implant3 source-drain 48.0 Implant2

69 ntran-res2-etch source-drain 195.0 Strip8

70 clean-surf12 source-drain 51.0 TClean1

71 ntran-bake source-drain 200.0 Boven8

72 ptran-litho source-drain 200.0 Litho2

73 ptran-implant source-drain 105.0 Implant2

74 ptran-res-etch source-drain 158.0 Strip8

75 ptran-back-etch source-drain 31.0 Strip6

76 clean-surf13 source-drain 51.0 TClean1

77 cvd+teos Foxide 135.0 Boven12

78 ox-reflow Foxide 82.0 Boven14

79 ox-planar Foxide 317.0 Strip5

80 fox--etch Foxide 53.0 Strip18

81 fox-post-allign Foxide 23.0 Scriber1

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.1 0.5 micron 3-metal CMOS Recipe Steps.
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82 clean-surf14 Foxide 51.0 TClean2

83 meas-part-ox Foxide 20.0 Surf1

84 contact-litho metal1 212.0 Litho2

85 ox-res-etch metal1 207.0 Strip18

86 defect-cont1 metal1 13.0 Mikro1

87 hand-clean metal1 56.0 TClean2

88 clean-surfx metal1 18.0 MClean1

89 metal1-dep metal1 106.0 Sputter1

90 met-part-meas metal1 20.0 Surf1

91 metal1-dep2 metal1 222.0 Sputter2

92 metal1-clean metal1 28.0 MClean1

93 met-part-meas2 metal1 20.0 Surf1

94 metal1-dep3 metal1 137.0 Sputter2

95 met-part-meas3 metal1 20.0 Surf1

96 metal1-litho metal1 212.0 Litho2

97 metal1-etch metal1 127.0 Strip13

98 metal1-clean2 metal1 18.0 MClean1

99 metal1-etch2 metal1 120.0 Strip13

100 metal1-part-meas metal1 20.0 Surf1

101 imox-sog Soxide 392.0 Boven15

102 planar-backetch Soxide 107.0 Strip5

103 imox-sec Soxide 112.0 Boven17

104 imox-part-meas Soxide 20.0 Surf1

105 met2-cont-litho metal2 212.0 Litho2

106 cont-res-oxetch metal2 355.0 Strip18

107 cont-met-etch metal2 49.0 Strip14

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.1 0.5 micron 3-metal CMOS Recipe Steps.
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108 cont-polymer metal2 26.0 Dep1

109 cont-def-cont metal2 13.0 Mikro1

110 met2-con-dep metal2 119.0 Sputter1

111 met2-part-meas metal2 20.0 Surf1

112 met2-con-dep2 metal2 233.0 Sputter1

113 met2-con-clean metal2 28.0 MClean1

114 met2-part-meas2 metal2 20.0 Surf1

115 met2-dep metal2 142.0 Sputter2

116 metal2-litho metal2 212.0 Litho2

117 metal2-etch metal2 127.0 Strip14

118 metal2-clean metal2 18.0 MClean1

119 metal2-etch2 metal2 120.0 Strip14

120 metal2-def-cont metal2 13.0 Mikro1

121 imox-sog-2 Toxide 392.0 Boven15

122 planar-backetch-2 Toxide 107.0 Strip5

123 imox-sec-2 Toxide 112.0 Boven17

124 imox-part-meas2 Toxide 20.0 Surf1

125 met3-cont-litho metal3 212.0 Litho2

126 cont2-res-oxetch metal3 355.0 Strip18

127 cont2-met-etch metal3 49.0 Strip14

128 cont2-polymer metal3 26.0 Dep1

129 cont2-def-cont metal3 13.0 Mikro1

130 met3-con-dep metal3 119.0 Sputter1

131 met3-part-meas metal3 20.0 Surf1

132 met3-con-dep2 metal3 233.0 Sputter1

133 met3-con-clean metal3 28.0 MClean1

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.1 0.5 micron 3-metal CMOS Recipe Steps.
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A.2 DRAM Process Recipe

The recipe for a 0.5 micron, 2-metal trench capacitor DRAM process consists of 174

steps and is given in Table A.2.

134 met3-part-meas2 metal3 20.0 Surf1

135 met3-dep metal3 142.0 Sputter2

136 metal3-litho metal3 212.0 Litho2

137 metal3-etch metal3 127.0 Strip14

138 metal3-clean metal3 18.0 MClean1

139 metal3-etch2 metal3 120.0 Strip14

140 metal3-def-cont metal3 13.0 Mikro1

141 passv-dep passv 144.0 Boven19

142 passv-litho passv 200.0 Litho1

143 passv-res-etch passv 250.0 Strip5

144 passv-bake passv 150.0 Boven16

145 end-process end 57.0 End

Step
#

Description of step Feature Time (min-
utes)

Workstation

1 begin_process begin 20.0 Begin

2 mark_lines scribe 23.0 Scriber1

3 init_clean scribe 52.0 TClean1

4 init_oxide blayer 524.0 Boven1

5 meas-part1 blayer 20.0 Surf1

Table A.2 0.5 micron 2-metal DRAM Recipe Steps.

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.1 0.5 micron 3-metal CMOS Recipe Steps.
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A.2 DRAM PROCESS RECIPE

6 litho_blayer blayer 218.0 Litho3

7 blay_ox_etch blayer 363.0 Strip1

8 clean-surf blayer 71.0 TClean1

9 blayer_ox blayer 168.0 Boven2

10 blayer_implant blayer 31.0 Implant1

11 blayer_clean blayer 71.0 TClean2

12 blayer-diff blayer 356.0 Boven3

13 ox-etch-strip blayer 196.0 Strip2

14 clean_surf blayer 71.0 TClean2

15 blayer-implan2 blayer 16.0 Implant2

16 blayer-clean1 blayer 71.0 TClean2

17 blayer-anneal blayer 270.0 Boven4

18 blayer-etch blayer 40.0 Strip3

19 blayer-clean2 blayer 53.0 TClean2

20 epitaxy-dep epitaxy 346.0 Epi1

21 epitaxy-clean epitaxy 51.0 TClean1

22 epitaxy-nit-ox epitaxy 261.0 Boven1

23 epitaxy-ox-etch epitaxy 29.0 Strip3

24 epitaxy-clean2 epitaxy 51.0 TClean1

25 epitaxy-nit-ox2 epitaxy 487.0 Boven1

26 meas-part2 epitaxy 20.0 Surf1

27 nwell-litho epitaxy 218.0 Litho3

28 ox_nit-etch epitaxy 175.0 Strip1

29 nwell-implant nwell 31.0 Implant2

30 nwell-res-strip nwell 308.0 Strip4

31 nwell-clean nwell 71.0 TClean1

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.2 0.5 micron 2-metal DRAM Recipe Steps.
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32 pwell-oxide pwell 844.0 Boven5

33 nit-oxide-etch pwell 211.0 Strip2

34 pwell-clean pwell 51.0 TClean1

35 pwell-litho pwell 218.0 Litho3

36 pwell-implant pwell 31.0 Implant2

37 pwell-res-etch pwell 147.0 Strip4

38 pwell-clean2 pwell 116.0 TClean1

39 pwell-drive pwell 766.0 Boven6

40 pwell-etch pwell 37.0 Strip3

41 pwell-clean3 pwell 51.0 TClean1

42 trench-pad-ox-nit trench 260 Boven2

43 trench-pad-teos trench 260 Boven13

44 trench-litho trench 212 Litho1

45 trench-ox-nit-etch trench 211 Strip9

46 trench-res-etch trench 147 Strip8

47 trench-etch trench 600 Strip19

48 trench-teos-etch trench 150 Strip7

49 cap-sac-ox capacitor 180 Boven11

50 cap-sac-etch capacitor 120 Strip7

51 cap-node-ox capacitor 350 Boven20

52 cap-poly-fill capacitor 180 Dep1

53 cap-poly-anneal capacitor 370 Boven8

54 cap-poly-etch-back capacitor 220 Strip6

55 cap-teos capacitor 280 Boven10

56 cap-etch capacitor 300 Strip5

57 cap-poly2-fill capacitor 80 Dep1

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.2 0.5 micron 2-metal DRAM Recipe Steps.
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A.2 DRAM PROCESS RECIPE

58 cap-poly2-anneal capacitor 160 Boven8

59 cap-back-etch capacitor 60 Strip6

60 cap-etch2 capacitor 180 Strip5

61 iso-litho isolation 212 Litho1

62 iso-etch isolation 120 Strip5

63 iso-res-etch isolation 100 Strip8

64 iso-teos-fill isolation 340 Boven10

65 iso-litho2-planar isolation 212 Litho1

66 iso-res-planar isolation 200 Strip8

67 part-meas isolation 20.0 Surf1

68 sac-ox-dep vt-adjust 222.0 Boven20

69 sac-ox-etch vt-adjust 32.0 Strip7

70 clean-surf5 vt-adjust 105.0 TClean1

71 thin-ox-dep vt-adjust 176.0 Boven13

72 vt-litho vt-adjust 218.0 Litho2

73 vt-impl1 vt-adjust 31.0 Implant2

74 vt-etch vt-adjust 147.0 Strip8

75 vt2-litho vt-adjust 218.0 Litho2

76 vt2-impl vt-adjust 91.0 Implant1

77 clean-surf7 gate 54.0 TClean1

78 thin-ox gate 182.0 Boven2

79 poly-dep poly 246.0 Boven7

80 poly-reflow poly 199.0 Boven9

81 etch-poly-ox poly 35.0 Strip9

82 poly-back-etch poly 49.0 Strip6

83 clean-surf8 poly 51.0 TClean1

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.2 0.5 micron 2-metal DRAM Recipe Steps.
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84 teos-dep poly 210.0 Boven10

85 sputter-a-sil poly 105.0 Dep1

86 meas-part3 poly 20.0 Surf1

87 poly-litho poly 211.0 Litho2

88 poly-a-sil-etch poly 91.0 Strip11

89 poly-res-etch poly 112.0 Strip20

90 poly-etch poly 114.0 Strip1

91 poly2-res-etch poly 191.0 Strip10

92 poly-clean-surf poly 51.0 TClean1

93 poly-teos-dep poly 214.0 Boven10

94 poly-meas-part poly 20.0 Surf1

95 polyox-etch poly 206.0 Strip5

96 clean-surf9 poly 51.0 TClean1

97 post-ox-ldd poly 160.0 Boven11

98 ntran-ldd-litho source-drain 200.0 Litho2

99 ntran-impl-ldd source-drain 50.0 Implant2

100 ntran-res-etch source-drain 100.0 Strip8

101 ptran-ldd-litho2 source-drain 200.0 Litho2

102 ptran-impl-ldd2 source-drain 39.0 Implant1

103 ptran-res-etch2 source-drain 129.0 Strip8

104 clean-surf10 source-drain 51.0 TClean1

105 ox+Teos-dep source-drain 295.0 Boven11

106 tran-etch-ox source-drain 194.0 Strip5

107 clean-surf11 source-drain 51.0 TClean2

108 tran-post-ox source-drain 200.0 Boven11

109 ntran-litho3 source-drain 200.0 Litho2

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.2 0.5 micron 2-metal DRAM Recipe Steps.
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A.2 DRAM PROCESS RECIPE

110 ntran-implant3 source-drain 48.0 Implant2

111 ntran-res2-etch source-drain 195.0 Strip20

112 clean-surf12 source-drain 51.0 TClean2

113 ntran-bake source-drain 200.0 Boven8

114 ptran-litho source-drain 200.0 Litho2

115 ptran-implant source-drain 105.0 Implant2

116 ptran-res-etch source-drain 158.0 Strip20

117 ptran-back-etch source-drain 31.0 Strip6

118 clean-surf13 source-drain 51.0 TClean2

119 local-int-nit local-interc 150.0 Boven12

120 local-int-litho local-interc 212.0 Litho1

121 local-int-nit-etch local-interc 100.0 Strip9

122 local-int-poly-dep local-interc 70.0 Boven7

123 local-int-anneal local-interc 180.0 Boven8

124 local-int-etch local-interc 230.0 Strip11

125 local-int-clean local-interc 51.0 TClean2

126 cvd+teos Foxide 135.0 Boven12

127 ox-reflow Foxide 82.0 Boven14

128 ox-planar Foxide 317.0 Strip5

129 fox--etch Foxide 53.0 Strip18

130 fox-post-allign Foxide 23.0 Scriber1

131 clean-surf14 Foxide 51.0 TClean2

132 meas-part-ox Foxide 20.0 Surf1

133 contact-litho metal1 212.0 Litho2

134 ox-res-etch metal1 207.0 Strip18

135 defect-cont1 metal1 13.0 Mikro1

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.2 0.5 micron 2-metal DRAM Recipe Steps.
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136 hand-clean metal1 56.0 TClean2

137 clean-surf15 metal1 18.0 MClean1

138 metal1-dep metal1 106.0 Sputter1

139 met-part-meas metal1 20.0 Surf1

140 metal1-dep2 metal1 222.0 Sputter2

141 metal1-clean metal1 28.0 MClean1

142 met-part-meas2 metal1 20.0 Surf1

143 metal1-dep3 metal1 137.0 Sputter2

144 met-part-meas3 metal1 20.0 Surf2

145 metal1-litho metal1 212.0 Litho2

146 metal1-etch metal1 127.0 Strip13

147 metal1-clean2 metal1 18.0 MClean1

148 metal1-etch2 metal1 120.0 Strip13

149 metal1-part-meas metal1 20.0 Surf1

150 imox-sog Soxide 392.0 Boven15

151 planar-backetch Soxide 107.0 Strip5

152 imox-sec Soxide 112.0 Boven17

153 imox-part-meas Soxide 20.0 Surf1

154 met2-cont-litho metal2 212.0 Litho2

155 cont-res-oxetch metal2 355.0 Strip18

156 cont-met-etch metal2 49.0 Strip14

157 cont-polymer metal2 26.0 Dep1

158 cont-def-cont metal2 13.0 Mikro1

159 met2-con-dep metal2 119.0 Sputter1

160 met2-part-meas metal2 20.0 Surf1

161 met2-con-dep2 metal2 233.0 Sputter1

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.2 0.5 micron 2-metal DRAM Recipe Steps.
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A.2 DRAM PROCESS RECIPE

162 met2-con-clean metal2 28.0 MClean1

163 met2-part-meas2 metal2 20.0 Surf1

164 met2-dep metal2 142.0 Sputter2

165 metal2-litho metal2 212.0 Litho2

166 metal2-etch metal2 127.0 Strip14

167 metal2-clean metal2 18.0 MClean1

168 metal2-etch2 metal2 120.0 Strip14

169 metal2-def-cont metal2 13.0 Mikro1

170 passv-dep passv 144.0 Boven19

171 passv-litho passv 200.0 Litho1

172 passv-res-etch passv 250.0 Strip5

173 passv-bake passv 150.0 Boven16

174 end-process end 57.0 End

Step
#

Description of step Feature Time (min-
utes)

Workstation

Table A.2 0.5 micron 2-metal DRAM Recipe Steps.
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Appendix B

Equipment Set

The equipment set in this appendix is described in terms of the workstation that

they belong to. Table B.1 describes the basic features of the work-stations and equip-

ment set designed for the two product factory with 2496 wafer starts per week. Note

that for each workstation only one piece of equipment is shown; the rest are not shown

in this table for clarity. The five fields in this table are:

1. Equipment Id: The identifying number of the piece of equipment.

2. Example equipment name: This field contains the name of a representative

piece of equipment in the work-station.

3. Work-station name: The name of the work-station referred to in process recipe

steps.

4. Capacity: This field gives the equipment capacity in number of wafers. Note

that the minimum capacity is given as 24 wafers (lot size).

5. No. of Equipment: The number of pieces of equipment in the named work-sta-

tion.

6. Capital Cost: Cost of equipment purchase in 1000’s of dollars. The depreciation

rate is assumed to be 40% (over a year) for all equipment.

7. Usage Cost: Cost of using the equipment for processing normalized to a year of

100% utilization.
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Equip-
ment

Id

Example
equipment

name

Worksta-
tion name

Capac-
ity

No. of
Equip-
ment

Capital
Cost in
1000 $

Usage
Cost in
1000 $

10101 begin1 Begin 24 1     0   0

10201 scriber1 Scriber1 24 1   180   40

10301 tclean1_1 TClean1 48 5   280   50

10401 tclean2_1 TClean2 48 4   280   50

10501 boven1_1 Boven1 96 4   700   200

10601 boven2_1 Boven2 72 3   450   200

10701 boven3_1 Boven3 96 2   450   200

10801 boven4_1 Boven4 96 1   250   100

10901 boven5_1 Boven5 96 3   550   250

11001 boven6_1 Boven6 96 3   450   200

11101 boven7_1 Boven7 96 1   300   400

11201 boven8_1 Boven8 96 3   450   200

11301 boven9_1 Boven9 96 1   450   200

11401 boven10_1 Boven10 96 3   450   200

11501 boven11_1 Boven11 96 3   400   200

11601 boven12_1 Boven12 96 1   500   250

11701 boven13_1 Boven13 96 2   220   120

11801 implant1_1 Implant1 24 2  5100   700

11901 implant2_1 Implant2 24 4  1800   400

12001 epi1_1 Epi1 24 4  1850   400

12101 strip1_1 Strip1 24 7  3000   700

12201 strip2_1 Strip2 24 5   300   100

12301 strip3_1 Strip3 24 2   100   40

12401 strip4_1 Strip4 24 5   300   100

Table B.1 Equipment set description.
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12501 strip6_1 Strip6 24 4   570   200

12601 strip7_1 Strip7 24 4   200   80

12701 strip8_1 Strip8 24 10   800   200

12801 strip9_1 Strip9 24 4   200   60

12901 strip10_1 Strip10 24 3   800   300

13001 strip11_1 Strip11 24 4  1500   700

13101 strip15_1 Strip15 24 2   800   400

13201 boven20_1 Boven20 96 2   420   100

13301 strip19_1 Strip19 24 7  3000   700

13401 strip20_1 Strip20 24 5   600   200

20101 boven14_1 Boven14 96 1   500   200

20201 boven15_1 Boven15 48 4  1200   400

20301 boven16_1 Boven16 48 1   100   30

20401 boven17_1 Boven17 24 2   100   30

20501 boven18_1 Boven18 48 1   820   200

20601 boven19_1 Boven19 48 1   800   200

20701 mclean1_1 MClean1 24 2   100   30

20801 sputter1_1 Sputter1 24 7  3800   600

20901 sputter2_1 Sputter2 24 6  2500   500

21001 dep1_1 Dep1 24 5   500   200

21101 strip12_1 Strip12 48 4  1600   400

21201 strip13_1 Strip13 24 3  1100   400

21301 strip14_1 Strip14 24 6  2300   600

21401 strip16_1 Strip16 24 4   800   300

21501 strip17_1 Strip17 24 4  1000   400

21601 end End 24 2     0   0

Equip-
ment

Id

Example
equipment

name

Worksta-
tion name

Capac-
ity

No. of
Equip-
ment

Capital
Cost in
1000 $

Usage
Cost in
1000 $

Table B.1 Equipment set description.
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21701 strip18_1 Strip18 48 5 1500   600

30101 litho1_1 Litho1 48 6  3100   1000

30201 litho2_1 Litho2 48 13  5000   1500

30301 surf1_1 Surf1 24 3  1500   300

30401 mikro1_1 Mikro1 24 1    25   8

30501 strip5_1 Strip5 24 19  3000   600

30601 litho3_1 Litho3 48 4  3100   1400

30701 surf2_1 Surf2 24 1  1500   400

Equip-
ment

Id

Example
equipment

name

Worksta-
tion name

Capac-
ity

No. of
Equip-
ment

Capital
Cost in
1000 $

Usage
Cost in
1000 $

Table B.1 Equipment set description.
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Appendix C

Product Attributes

In this appendix, yield related attributes of the CMOS and DRAM products used for

simulation is presented. First, the critical area for the CMOS design with three values

of minimum feature sizes (0.6, 0.5 and 0.4 microns) are presented followed by the 0.4

micron DRAM critical areas.

C.1 CMOS Product

The die size of the CMOS product with 0.6 micron minimum feature size is 3.00 cm2

and the number of dies per wafer is 50. The critical area for shorts in polysilicon,

metal1, metal2 and metal3 are shown in Figure C.1.

Figure C.1 Critical area vs. defect size for 0.6 micron CMOS design.
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C.1 CMOS PRODUCT

The die size of the CMOS product with 0.5 micron minimum feature size is 2.11 cm2

and the number of dies per wafer is 73. The critical area for shorts in polysilicon,

metal1, metal2 and metal3 are shown in Figure C.2.

The die size of the CMOS product with 0.4 micron minimum feature size is 1.4 cm2

and the number of dies per wafer is 110. The critical area for shorts in polysilicon,

metal1, metal2 and metal3 are shown in Figure C.3.

The scaling of critical area for polysilicon as a result of shrinking from 0.6 micron to

0.4 microns is illustrated in Figure C.4. The scaled critical areas are obtained in the

following way. Let the critical area function, f1, for a minimum feature size, m1, be

given by:

(C.1)

where, R is the defect size. Then the critical area function, f2, for a minimum feature

size of, m2, is given by:

(C.2)

Figure C.2 Critical area vs. defect size for 0.5 micron CMOS design.
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where, s is the scaling factor and is equal to m2/m1. The critical area for the original

product with 0.6 micron minimum feature size is given up to 5 micron defect size.

Critical obtained after scaling is thus valid up to a defect size 5s which is less than 5

micron. From 5s to 5 microns defect size, the critical area function is extrapolated

linearly.

C.2 DRAM Product

The die size of DRAM product with 0.4 micron minimum feature size is 1.4 cm2 and

the number of dies per wafer is 110. The critical area for shorts in polysilicon, metal1,

metal2 and metal3 are shown in Figure C.5. Here, the critical areas are assumed to be

comparable for polysilicon, metal1 and metal2 as shown. Metal1 is most sensitive to

defects and metal2 is the least sensitive although the difference is noticeable only for

small defect sizes.

Figure C.3 Critical area vs. defect size for 0.4 micron CMOS design.
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C.1 CMOS PRODUCT

Figure C.4 Critical area scaling for polysilicon shorts for the three designs.

Figure C.5 Critical area vs. defect size for 0.4 micron DRAM design.
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