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At a Glance:

 

This article describes a prototype of a discrete event simulator - Y4 (Yield Forecaster) -
capable of simulating defect related yield loss as a function of time, for a multi-product IC
manufacturing line. The methodology of estimating yield and cost is based on mimicking the
operation and characteristics of a manufacturing line in the time domain. The effect of parti-
cles introduced during wafer processing as well as changes in their densities due to process
improvements are taken into account. A spectrum of results are presented for a manufactur-
ing scenario to demonstrate the usefulness of the simulator in formulating IC manufacturing
strategies. 

 

Introduction 

 

Improving productivity and cost effectiveness of a semiconductor industry has always been
a high priority and is more so in the light of increasing complexity and competition in the mar-
ket. Manufacturing strategies to deal with ever increasing dimensions to this problem is often
at best ad hoc in nature. It was only in 1992 when published articles on usefulness of particle
monitors [1] and in just 5 years these equipment are considered almost indispensable in
todays semiconductor industry. And yet there are no models to indicate how far useful they
had been in improving productivity and cost effectiveness - only anecdotal evidences like the
recently published article [2]. Such examples are plenty in semiconductor industries and no
systematic approach has been employed to deal with them.

The most systematic attempt till date perhaps is embodied in the National Semiconductor
technology Roadmap (NTRS) [3] which identiÞes many bottlenecks and suggests strategies
for maintaining/improving the historical productivity and cost curves. However, the vastness
and the complexity of this problem necessitates, on one hand, dividing into individual and
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more tractable focus areas like design, test, packaging, fabrication, etc. On the other hand,
these domains, sub-domains, etc., are also tightly coupled to such an extent that overall pro-
ductivity cannot be realized without the capability to capture and model inter-domain depen-
dencies. 

A case in point is the projected requirement of achieving high yield learning rate. The NTRS
is very terse on this topic and does not adequately expound on it. The reason could be as sim-
ple as noting that high yield learning rate can be achieved if one meets all the criterion set
forth by roadmaps for design, test, fabrication, etc. But is it really that straight-forward? One
has to Þrst ensure that the design is least sensitive to fabrication uncertainties. Then fabri-
cation must be very stable and as much as possible contamination free. Design must be char-
acterized well so that one test and diagnose causes for all possible failures. And then one has
to depend on a variety of time consuming failure analysis to pin-point the failure. The ability
to pin-point failures depends on the design, the test methodologies, fabrication characteristics
and effectiveness of in-line and historical data available. Rapid increase in density and num-
ber of interconnect layer compounded with heavy reliance on traditional (optical inspection)
techniques during failure analysis, have only made the matter worse. It is clear that to be able
to explore the spectrum of possibilities, one cannot ignore the inter-domain dependencies. 

Optimum exploration of cost-revenue trade-offs is thus difÞcult, involving yield forecasts,
and cannot be realized unless it is based on adequate experimental or simulation models. A
few researchers have investigated yield learning in a semiconductor manufacturing line
[4,5,6,7], but the models applied do not capture the mechanics of yield learning itself. As a
result, methodologies to perform cost versus yield trade-off analysis over time do not exist at
present. 

To address this need, we have developed a new methodology to predict defect-related yield
which takes into consideration not only the operational aspects of manufacturing, but also the
process of yield learning. Models have been developed to estimate yield and cost as a function
of time. The goals of this article are to present a tool -Y4 (

 

Y

 

ield 

 

Fore

 

caster) - which imple-
ments this methodology, and to illustrate Y4Õs use in developing manufacturing strategies.

 

Modeling Methodology [8,9,10,11]

 

For the purpose of modeling yield learning curve, a manufacturing process can be viewed
as consisting of two components: product fabrication and failure analysis. In order to capture
the essence of the mechanism of yield learning, it is necessary to take a closer look at the key
events in each of these components. In order to describe the yield as a function of time, let us
Þrst concentrate on a single product manufacturing line. Let us also assume that there exists
only one type of defect originating from a single source (a piece of equipment) of particles. This
simple case sufÞces to capture the essence of the yield learning process. 

The hypothetical yield versus time curve for the above scenario resembles the staircase
function shown in Figure 1. Here, 

 

T

 

f

 

 is the time required for analysis and detection of the fail-
ure mechanism leading to process intervention. 
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 is the time needed for a process correction
which decreases contamination levels, and the time required for the new process parameters
to be effective. 
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 is the interval between the time process correction is made and the time
change in yield of the fabricated wafers is observed. Thus, the total time required for yield
change to occur is 
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) and the net change in yield is 
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c

 

. The value of 

 

Y

 

c

 

 is deter-
mined by the new level of contamination.

Estimating 

 

T

 

r

 

 is equivalent to estimating the cycle time for a process, albeit partially, start-
ing from an intermediate process step where the correction is made until the last step of the
process. Thus, it is the sum of the raw processing time (RPT) and the queuing time that
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results when wafers must wait between process steps. One of the major contributors to the
queuing time is the downtime of the equipment. Note that the time factor 

 

T

 

e

 

 may also con-
tribute to the equipment downtime depending on the outcome of failure analysis. 

 

T

 

f

 

, the time
needed to detect and localize the defect, depends on a number of attributes associated with
IC design, defect and failure analysis process. The change in yield, 

 

Y

 

c

 

, on the other hand,
depends on the correctness of the diagnosis and the efÞciency with which the contamination
rate can be reduced as a result of the corrective actions.

 From the above short summary, it is evident that the yield learning process should be
described as a sequence of events starting with the introduction of particles, followed by
detection of defects and identiÞcation of their source, and concluding with completely (or par-
tially) eliminating the source of particles. The rate of yield learning, therefore, depends on: 

1. The relationship between particles, defects and faults;
2. Ease of defect localization which in turn depends on:

 

a.

 

size, layer and type of defect,

 

b.

 

level of ÒdiagnosabilityÓ of the IC design and,

 

c.

 

probability of occurrence of catastrophic defects;
3. Effectiveness of the corrective actions performed; 
4. The timing of each of the events mentioned above;
5. Rate of wafer movement through the process.

All of the above factors must be modeled in order to build an yield learning simulator.

From this basic model of the yield learning process, it is clear that the primary capability
of the simulator must be to keep track of the sequence of events in a factory. The second
requirement for the simulator is the ability to simulate the movement of the wafers in a fab-
rication line, and representing such entities as product, process recipes, equipment, person-
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nel and operating rules. In [9,10] the speciÞc modeling aspects including cost models have
been dealt with in detail. 

 

Structure and Implementation of Y4

 

The methodology and the models for yield learning described in the previous section have
been implemented as a software tool called Y4 (Yield Forecaster). Figure 2 shows the overall
structure of the Y4 framework. The heart of the simulator is the event handler which commu-
nicates with six sub-modules: the wafer movement simulator (WSIM), the yield simulator
(YSIM), the failure analysis simulator (FASIM), the in-line particle monitor simulator
(PSIM), the cost simulator (COSIM) and the probe tester simulator (TSIM). The operation of
the event handler and these six modules can be controlled through the simulation control
unit. The user can implement different models using the toolkit of functions provided for
accessing and modifying the common database for all the modules and the event handling
routines. A basic user interface is available to read input Þles for the models, output the sta-
tistics gathered and customize the simulation control strategy. 

The models described in [9,10] have been implemented as internal models of the submod-
ules (WSIM, etc.). WSIM is similar to the commercial fabrication line simulator ManSim [12]
although the current implementation models only a subset of ManSimÕs operating rules and
conditions. On the other hand, the number of external events that can be deÞned in ManSim
is limited. Thus, it was considered necessary to implement Y4 with the ability to deÞne events
for particle introduction (YSIM), failure analysis (FASIM), particle monitoring (PSIM), cor-
rective actions (YSIM), and testing (TSIM). 

 

Figure 2.

 

Top level structure of the Y4 framework.
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Simulation Experiments

 

In this section, results of a spectrum of simulations which will demonstrate the capabilities
of Y4 in being able to model interactions between various design, fabrication, in-line monitor-
ing, and failure analysis attributes will be presented. First, the assumptions and some
aspects of model parameters setup will be discussed in order to establish the premise. Then,
the simulation results for various relevant scenarios will presented and compared from pro-
ductivity and cost effectiveness perspectives.

In the examples that follow, we will use a 0.5 micron 3 metal CMOS process recipe. Due to
its proprietary nature, data pertaining to cost of equipment, etc., has been scaled appropri-
ately. The process recipes had to be modiÞed for the same reason. The modiÞed recipe consists
of 145 steps using 183 pieces of equipment for a 2496 wafer starts per week (WSPW) capacity
factory (a medium sized factory). The lot size is 24 wafers and thus the line capacity is 104
lots per week. The raw processing time is 302 hrs. The above process and cost data are good
approximations of medium size real life manufacturing operations.

In order to validate WSIM (the core of Y4), cycle time simulations were also conducted using
ManSim, and the two were found to be within 1% of each other. Cost simulations were also
performed to conÞrm the dependence of cost of wafer on several factors including product mix,
start rate, number of metal layers, etc. Details of these experiments alongwith basic simula-
tions of cycle times, test costs and yield distributions are presented in [9]. 

 

Yield Learning Analysis

 

It was assumed that wafers are 6 inches in diameter which can accommodate 110 chips of
1.4 cm
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 size each. To keep it simple, only 4 types of particles were considered resulting in
either shorts in metal and poly. The defect sensitivities (measured by critical areas, as a func-
tion of defect size), for each defect type was derived by scaling results obtained from several
CMOS designs in order to mimic a microprocessor like product [13]. 

Wafers were sampled for failure analysis when there were more than 30 defective die on a
wafer and when there are fewer than 3 wafers waiting to be analyzed. The failure analysis
was simulated as comprising Þve steps: observation under microscope, observation with
SEM, stripping layers (if required), cross section analysis and spectroscopic analysis. The
model parameters are set such that the maximum time required to analyze 30 defects in the
top metal layer was about 2 weeks (not considering the queueing time). 

The weekly average of the yield trend plot is shown in Figure 3(a) along with the yield of
the polysilicon and the metal 3 layers. Observe that the yield of the metal 3 layer starts to
increase almost right after failure analysis is initiated (after the 10th week). The polysilicon
layer yield, on the other hand, starts to increase only after another 15 weeks (around 25th
week). This reßects the fact that polysilicon defects are more difÞcult to detect than metal 3
defects which are nearer to the surface of the chip. Further, the yield of metal 3 is low enough
during the Þrst few weeks of failure analysis that the resources are kept busy analyzing sam-
ples for metal defects. Polysilicon defects are, in effect, ignored until the metal 3 yield reaches
about 0.65. However the rate of yield learning for the polysilicon layer is higher than metal 3
since the increased availability of samples with polysilicon defects compensates for the
decreased diagnosability of these defects. 

Figure 3(b) shows the results of yield simulation when the number of each type of failure
analysis equipment is doubled. In addition to the obvious increase in the yield learning, two
more effects are apparent. First, the polysilicon layer yield starts to increase around the 20th
week, which is about 5 weeks sooner than in the previous case. Secondly, at this point, the
metal 3 yield is higher than that in the earlier case (0.73 instead of 0.65). There is enough
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leftover capacity to allow for allocation of resources to the detection of polysilicon defects
while the metal defects are being analyzed. Availability of more resources enables metal
defects to be diagnosed more quickly. 

 

Impact of Sudden Change in Yield on Learning Rate and Cost

 

In the previous section, we have implicitly assumed that changes occurring in particle rates
and size distributions due to cleaning the corresponding equipment causes an 

 

improvement

 

in yield. However, they may possibly change in such a way as to 

 

degrade

 

 the yield. SpeciÞcally,
at the end of 30th week, the mean of the particle number distribution for one of the seven
sputtering tools is assumed to increase by a factor of Þve.

Figure 4(a) shows the result of the simulation illustrating the yield trend plots. Observe
that the net yield learning rate has decreased compared to the result shown in Figure 3. The
increase in metal defects causes metal yield to drop Þrst. After a certain delay, failure analysis
catches up with the increased number of defective die with metal defects, and metal yield
starts to increase again. But at the same time, the polysilicon yield learning rate drops
because failure analysis resources are mostly consumed in detecting metal defects. 

Figure 4(b) illustrates a similar situation but with double the failure analysis capacity. As
expected, the yield learning rate is higher than in the simulation shown in Figure 3(b). But
there is an important difference between the two sets of yield learning curves. In the latter
case, the yield learning rate of polysilicon layer remains essentially unaffected. This result
again illustrates that the extra capacity helps to perform analysis on polysilicon defects in
spite of higher occurrence of defective die with metal defects. Also, at the time the yield prob-
lem occurs, the metal yield is high enough that the number of defective die sampled for anal-
ysis is already low. Thus, the failure analysis facility has little trouble absorbing the relatively
small increase in the number of defective die with metal defects. 

It is interesting to compare the two manufacturing lines - one with a normal capacity and
the other with doubled capacity of failure analysis - from the perspective of sensitivity
towards yield degradation. Table 1 summarizes the results for the two manufacturing lines.
The cumulative number of good die for the simulation period and the average cost are com-
pared. Notice that, as it should be expected, the manufacturing line with more failure analy-

 

Figure 3.
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sis capacity is much less sensitive to the yield problem. Thus, any loss incurred due the yield
problem illustrated earlier is appreciably reduced in the second manufacturing line. 

Finally, for argumentÕs sake, assume that all the ICs produced can be sold at $100 each. The
last two rows of Table 1 show the estimated proÞt in absolute value and as a percentage of
the total investment, respectively. Comparing the case where there are no yield disturbances,
one can see that an extra investment of $38M in failure analysis facility increases the proÞt
by $355M. 

 

Figure 4.

 

Average Yield learning with sudden increase in defect release rates.
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Impact of Particle Monitors on Yield Learning

 

Particle monitors are employed with the expectation that a substantial fraction of defects
would be detected as and when they occur during fabrication leading to perhaps considerably
faster yield ramp. In the least, particle monitors can help identify critical steps where parti-
cles may cause yield loss and detect out-of-control situations. But this technology has its lim-
itations which include high equipment cost, questionable resolution below 1 micron particle
size and wafer throughput. In fact, one can push the limits of resolution to certain extent at
the expense of throughput rate. To date, the impact of particle monitors on cost and yield (an
thus productivity) has not been studied.

Off-line failure analysis, however, has been traditionally the main backbone of yield ramp-
ing. It is slow, can be expensive but at the same time can be very accurately pin-point the
source of yield loss. So, on one hand, particle monitors can respond quickly to yield loss prob-
lems but can be inaccurate and, on the other hand, failure analysis has long cycle time but
can be very effective in yield ramping. In this section, we will introduce simple models and
results which explores this scenario.

Unlike the previously presented examples, a few changes were made to the simulation
setup to reßect a more realistic scenario. It was assumed that 13 particle sources resulted in
12 unique defect types leading to faults. Process recipes were modiÞed to include the particle
monitoring step after each step where particles are introduced. It was assumed that 4 chips
on 3 wafers are scanned on 

 

all

 

 wafers. This required 16 scanners operating at 90% utilization
level. It was also assumed that defects in lower layers like active area and poly are more dif-
Þcult to detect than defects in metal layers. A simple rule to initiate equipment cleaning as a
result of particle monitoring activity was implemented to simulate yield learning. Equipment
cleaning is initiated when average number of particles per die in a lot exceeds a given thresh-
old (20). The excess downtime of equipment due to such activity was limited to maximum of
5%. Under these assumptions the simulation resulted in the yield learning curve shown in
Figure 5 and expected the yield learning rate is slow and the highest yield achievable is also
low.   

If we turn our attention to off-line failure analysis alone, then the yield learning curve is as
shown in Figure 6. The learning rate and Þnal yield are obviously higher and this is due to
some important differences in assumptions. It was assumed that defect reduction as a result
of failure analysis is much more effective, by as much as factor of 5 at times (depending on
the correctness of diagnosis), than due to particle monitoring. However, the feedback cycle
time of failure analysis is usually considerably longer compared to the particle monitors. 

Figure 7 shows the yield as a function of time when 

 

both

 

 particle monitors and failure anal-
ysis are used to ramp up the yield. For comparison, the curves in Figure 5 and Figure 6 are
also shown. In this example, we assumed that these two yield ramping methods are essen-
tially independent of each other under the constraint that the net downtime of any equipment
due to equipment cleaning must not exceed the predeÞned threshold of 5%. 

Let us now turn our attention to productivity and cost comparisons as shown in Table 2. As
it can be seen, for the case where both techniques are employed for yield ramping productivity
is highest and cost of good die is lowest. From a strategic point of view timing is important
especially for ASIC products. The last two rows compares the time to reach a speciÞed number
of good dies (2 million) and number of good dies produced in a given period of time (20 weeks
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Figure 5.

 

Particle monitoring initiated yield learning.

 

Figure 6.

 

Failure analysis initiated yield learning.
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in our case). As it is clear, employing both these techniques in conjunction results in a strate-
gic advantage which is quantiÞable. 

 

Figure 7.

 

Combined yield vs. time curves.
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Conclusions

 

We have presented a methodology to estimate both cost and yield of VLSI circuits as a func-
tion of time. The key and unique characteristic of our methodology is the 

 

integration

 

 of
major relationships governing the kinetics of the IC manufacturing operation. Such integra-
tion provides a very powerful option for the crucial process of strategic manufacturing design
and decision-making. 

The methodology and the models were implemented as the software tool Y4. Through a
spectrum of simulation results we have illustrated that Y4 can reasonably replicate the man-
ufacturing line characteristics. This has been achieved after extensive tuning to semiconduc-
tor manufacturing reality.

But more importantly, we have shown that Y4 is capable of simulating scenarios which are
relevant to cost-revenue trade-off studies. Such a capability in our opinion is extremely valu-
able if one takes into account such manufacturability-related tasks as:

 

a.

 

Factory design and capacity planning,

 

b.

 

Product design and analysis,

 

c.

 

Designing failure analysis strategy and
Finally, it must be mentioned that the approach taken in Y4 is only a Þrst step in modeling

IC manufacturing in a manner addressing inter-disciplinary trade-offs. The methodology
described here should, and hopefully will, be expanded in the future. So the results presented
in this article should be viewed as an opening of a new domain of study rather than as the
Þnal results of mature research. 
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